217 resultados para Hydrocarbon biodegradation
Resumo:
The definition of models and base parameters for application of investigation tools in environment with high complexity are a basic premise to any sciences. The geophysics is a science with solid theoretical base and applications in diversified areas of the sciences geological, astronomical, meteorological, among many others. Its application in environmental studies is relatively recent and needs further research. To understand the behavior of resident contaminants in a dynamic and complex environment as the geological, it requests studies in scale laboratorial, under control of factors seasonality variable. This work simulates a leak of gasoline in soil, under conditions and in laboratory scale, with the objective of monitoring the temporary behavior of the hydrocarbon under the optics of variation of the parameter physical electric resistivity. The results indicate increase of the resistivity in recent periods the contamination, followed for stability in the values and finally fall and return tendency to the natural conditions.
Resumo:
The biological response following subcutaneous and bone implantation of β-wollastonite(β-W)-doped α-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalcium phosphate (TCP), consisting of a mixture of α- and β-polymorphs; TCP doped with 5 wt. % of β-W (TCP5W), composed of α-TCP as only crystalline phase; and TCP doped with 15 wt. % of β-W (TCP 15), containing crystalline α-TCP and β-W. Cylinders of 2×1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue β-W-doped α-TCP implants (TCP5W and TCP 15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.
Resumo:
A rapid, robust and economical method for the analysis of persistent halogenated organic compounds in small volumes of human serum and umbilical cord blood is described. The pollutants studied cover a broad range of molecules of contemporary epidemiological and legislative concern, including polychlorobiphenyls (PCBs), polychlorobenzenes (CBs), hexachlorocyclohexanes (HCHs), DDTs, polychlorostyrenes (PCSs) and polybromodiphenyl ethers (PBDEs). Extraction and clean-up with n-hexane and concentrated sulphuric acid was followed with analysis by gas chromatography coupled to electron capture (GC-ECD) and GC coupled to negative ion chemical ionisation mass spectrometry (GC-NICI-MS). The advantages of this method rest in the broad range of analytes and its simplicity and robustness, while the use of concentrated sulphuric acid extraction/clean-up destroys viruses that may be present in the samples. Small volumes of reference serum between 50 and 1000 μL were extracted and the limits of detection/quantification and repeatability were determined. Recoveries of spiked compounds for the extraction of small volumes (≥300 μL) of the spiked reference serum were between 90% and 120%. The coefficients of variation of repeatability ranged from 0.1-14%, depending on the compound. Samples of 4-year-old serum and umbilical cord blood (n = 73 and 40, respectively) from a population inhabiting a village near a chloro-alkali plant were screened for the above-mentioned halogenated pollutants using this method and the results are briefly described. © 2010 Springer-Verlag.
Resumo:
Black yeast members of the Herpotrichiellaceae present a complex ecological behavior: They are often isolated from rather extreme environments polluted with aromatic hydrocarbons, while they are also regularly involved in human opportunistic infections. A selective technique to promote the in vitro growth of herpotrichiellaceous fungi was applied to investigate their ecophysiology. Samples from natural ecological niches and man-made environments that might contain black yeasts were enriched on an inert solid support at low humidity and under a controlled atmosphere rich in volatile aromatic hydrocarbons. Benzene, toluene, and xylene were provided separately as the sole carbon and energy source via the gas phase. The assayed isolation protocol was highly specific toward mesophilic Exophiala species (70 strains of this genus out of 71 isolates). Those were obtained predominantly from creosote-treated railway ties (53 strains), but isolates were also found on wild berries (11 strains) and in guano-rich soil samples (six strains). Most of the isolates were obtained on toluene (43 strains), but enrichments on xylene and benzene also yielded herpotrichiellaceous fungi (17 and 10 isolates, respectively). Based upon morphological characterizations and DNA sequences of the full internal transcriber spacers (ITS) and the 8.5S rRNA genes, the majority of the obtained isolates were affiliated to the recently described species Exophiala xenobiotica (32 strains) and Exophiala bergeri (nine strains). Members of two other phylogenetic groups (24 and two strains, respectively) somewhat related to E. bergeri were also found, and a last group (three strains) corresponded to an undescribed Exophiala species. © 2010 The Author(s).
Resumo:
The geoelectrical methods have been widely used in research involving the evaluation and monitoring of areas with environmental risk. This paper presents the results of applying the Electrical Resistivity method by electrical profiling technique to investigate the fuel presence in soil and groundwater proceeding in station gas, located in an urban area Caçapava do Sul (RS), on soil in situ, from modification of Caçapava granite. The results suggest an association between low resistivity anomalies zone with potentially degraded from underground tanks worthless on the form of free phase, now represented as residual phase. The results of the model inversion are consistent with the standards expected for hydrocarbons present in the saturated zone. The electrical resistivity method proved to be an important tool for assessment and environmental monitoring in conjunction with direct methods of investigation.
Resumo:
We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees. © FUNPEC-RP.
Resumo:
This paper aims to highlight the state of the art of obtaining carbon credits through the use of electric vehicles. This is one of the solutions to significantly reduce the emission of GHG (Greenhouse Gas) emissions in the case of CO 2, NOx, SOx, and CH 4 (thermochemical reactions arising from the combustion of gasoline with ethanol) in motor vehicles. For this quantitative study was done based on the survey of bibliographic data available and the development of basic calculations considering the car fleet of the Country of Brazil and the CO 2 emissions generated by the same. Thus explaining the considerable gain in air quality and reduction of vectors of greenhouse gases in the case of replacing the current fleet of vehicles combustion of hydrocarbon aliphatic chain, for an eco-efficient fleet consists of electric vehicles and/or hybrids.
Resumo:
This study investigated the effect of an Argon-based nonthermal plasma (NTP) surface treatment-operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: Calcium-Phosphate (CaP) and CaP + NTP (CaP-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received 2 plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ca, C, O, and P for the CaP and CaP-Plasma surfaces. Both surfaces presented carbon primarily as hydro-carbon (CAC, CAH) with lower levels of oxidized carbon forms. The CaP surface presented atomic percent values of 38, 42, 11, and 7 for C, O, Ca, and P, respectively, and the CaPPlasma presented increases in O, Ca, and P atomic percent levels at 53, 12, and 13, respectively, in addition to a decrease in C content at 18 atomic percent. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC and BAFO were observed for CaPPlasma treated surfaces. Surface elemental chemistry was modified by the Ar-based NTP. Ar-based NTP improved bone formation around plateau-root form implants at 3 weeks compared with CaP treatment alone. © 2012 Wiley Periodicals, Inc.
Resumo:
Tissue engineering has been defined as an interdisciplinary field that applies the principles of engineering and life sciences for the development of biological substitutes to restore, maintain or improve tissue function. This area is always looking for new classes of degradable biopolymers that are biocompatible and whose activities are controllable and specific, more likely to be used as cell scaffolds, or in vitro tissue reconstruction. In this paper, we developed a novel bionanocomposite with homogeneous porous distribution and prospective natural antimicrobial properties by electrospinning technique using Stryphodedron barbatimao extract (Barbatimão). SEM images showed equally distribution of nanofibres. DSC and TGA showed higher thermal properties and change crystallinity of the developed bionanocomposite mainly because these structural modification. © 2012 Elsevier B.V.
Resumo:
The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3. kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24. h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5. g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12. h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6. h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3. h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6. kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3. h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows. © 2013 American Dairy Science Association.
Resumo:
Sugarcane bagasse was pretreated with ozone to increase lignocellulosic material digestibility. Bagasse was ozonated in a fixed bed reactor at room temperature, and the effect of the two major parameters, ozone concentration and sample moisture, was studied. Acid insoluble and total lignin decreased whereas acid soluble lignin increased in all experiments. Pretreatment barely attacked carbohydrates, with cellulose and xylan recovery rates being >92%. Ozonolysis increased fermentable carbohydrate release considerably during enzymatic hydrolysis. Glucose and xylose yields increased from 6.64% and 2.05%, for raw bagasse, to 41.79% and 52.44% under the best experimental conditions. Only xylitol, lactic, formic and acetic acid degradation compounds were found, with neither furfural nor HMF (5-hydroxymethylfurfural) being detected. Washing detoxification provided inhibitor removal percentages above 85%, increasing glucose hydrolysis, but decreasing xylose yield by xylan solubilization. SEM analysis showed structural changes after ozonization and washing. © 2013 Elsevier Ltd.
Resumo:
Microparticles found in the air may be associated with organic matter that contains several compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs) and nitro-PAHs, and may pose a significant risk to human health, possibly leading to DNA mutations and cancers. This study associated genotoxicity assays for evaluating human exposure with the atmospheric air of two urban areas in southern Brazil, that received different atmospheric contributions. Site 1 was under urban-industrial influence and the other was a non-industrial reference, Site 2. Organic extracts from the airborne particulate matter were tested for mutagenicity via the Salmonella/microsome assay and analyzed for PAH composition. Cells samples of people residing in these two cities were evaluated using the comet and micronucleus assay (MN).Concentrations of the individual PAHs ranged from 0.01ng/m3 (benzo[a]anthracene) to 5.08ng/m3 (benzo[ghi]perylene). As to mutagenicity analysis of airborne, Site 1 presented all the mutagenic responses, which varied from 3.2±1.22rev/m3 (TA98 no S9) to 32.6±2.05rev/m3 (TA98, S9), while Site 2 ranged from negative to minimal responses. Site 1 presented a high quantity of nitro and amino derivatives of PAHs, and peaked at 56.0±3.68rev/μg (YG1024 strain). The two groups presented very low DNA damage levels without intergroup difference. Although Site 1 presented high mutagenic responses in the air samples, high PAH levels, healthy people exposed to this environment did not show significative damage in their genetic material. However, the evaluation of different environmental and genetic damage in such population is necessary to monitor possible damages. © 2013 Elsevier Inc.
Resumo:
The invasive fire ant Solenopsis invicta is medically important because its venom is highly potent. However, almost nothing is known about fire ant venom proteins because obtaining even milligram-amounts of these proteins has been prohibitively challenging. We present a simple and fast method of obtaining whole venom compounds from large quantities of fire ants. For this, we separate the ants are from the nest soil, immerse them in dual-phase mixture of apolar organic solvent and water, and evaporate each solvent phase in separate. The remaining extract from the aqueous phase is largely made up of ant venom proteins. We confirmed this by using 2D gel electrophoresis while also demonstrating that our new approach yields the same proteins obtained by other authors using less efficient traditional methods. © 2013 Elsevier Ltd.
Resumo:
Mutualistic associations shape the evolution in different organism groups. The association between the leaf-cutter ant Atta sexdens and the basidiomycete fungus Leucoagaricus gongylophorus has enabled them to degrade starch from plant material generating glucose, which is a major food source for both mutualists. Starch degradation is promoted by enzymes contained in the fecal fluid that ants deposit on the fungus culture in cut leaves inside the nests. To understand the dynamics of starch degradation in ant nests, we purified and characterized starch degrading enzymes from the ant fecal fluid and from laboratory cultures of L. gongylophorus and found that the ants intestine positively selects fungal α-amylase and a maltase likely produced by the ants, as a negative selection is imposed to fungal maltase and ant α-amylases. Selected enzymes are more resistant to catabolic repression by glucose and proposed to structure a metabolic pathway in which the fungal α-amylase initiates starch catalysis to generate byproducts which are sequentially degraded by the maltase to produce glucose. The pathway is responsible for effective degradation of starch and proposed to represent a major evolutionary innovation enabling efficient starch assimilation from plant material by leaf-cutters. © 2013 Elsevier Ltd.
Resumo:
The Iguape and Cananéia Lagoon-Estuarine Complex is a biodiversity hotspot in southeastern Brazil. In recent decades, the region has become an important destination for recreational fishing. The objective of this study was to analyze the socioeconomic characteristics of visiting anglers and fishing guides working in the Cananéia-Iguape-Peruíbe Environmental Protected Area and their views on fisheries management. Data were collected through semi-structured interviews conducted between January 2009 and January 2010. We interviewed 278 anglers, who were predominantly male (93%) with a mean age of 47 years and from the state of São Paulo. The targeted species were snooks (Centropomus undecimales and Centropomus parallelus) and weakfishes (Cynoscion leiarchus and Cynoscion acoupa). Only half the anglers had the mandatory fishing license, and many of them lacked knowledge about catch quotas and minimum size requirements for specific species. The fishing guides (n = 80) were all male, with a mean age of 39 years and extensive experience. Most of the guides believe that the study area is somewhat degraded due to the removal of riparian vegetation, siltation, pollution, and especially the depletion of fish stocks. The opinions of the stakeholders (anglers and guides) converge on the high priority needs of the fishery and possible management actions regarding recreational fishing, such as improved fisheries enforcement (first in order of importance), proper training of fishing guides, zoning of fishing areas, and the definition of a maximum size limit. © 2013 Elsevier Ltd.