132 resultados para Genetic Algorithm optimization
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a mathematical model adapted from literature for the crop rotation problem with demand constraints (CRP-D). The main aim of the present work is to study metaheuristics and their performance in a real context. The proposed algorithms for solution of the CRP-D are a genetic algorithm, a simulated annealing and hybrid approaches: a genetic algorithm with simulated annealing and a genetic algorithm with local search algorithm. A new constructive heuristic was also developed to provide initial solutions for the metaheuristics. Computational experiments were performed using a real planting area and semi-randomly generated instances created by varying the number, positions and dimensions of the lots. The computational results showed that these algorithms determined good feasible solutions in a short computing time as compared with the time spent to get optimal solutions, thus proving their efficacy for dealing with this practical application of the CRP-D.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel common Tabu algorithm for global optimizations of engineering problems is presented. The robustness and efficiency of the presented method are evaluated by using standard mathematical functions and hy solving a practical engineering problem. The numerical results show that the proposed method is (i) superior to the conventional Tabu search algorithm in robustness, and (ii) superior to the simulated annealing algorithm in efficiency. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
Large scale combinatorial problems such as the network expansion problem present an amazingly high number of alternative configurations with practically the same investment, but with substantially different structures (configurations obtained with different sets of circuit/transformer additions). The proposed parallel tabu search algorithm has shown to be effective in exploring this type of optimization landscape. The algorithm is a third generation tabu search procedure with several advanced features. This is the most comprehensive combinatorial optimization technique available for treating difficult problems such as the transmission expansion planning. The method includes features of a variety of other approaches such as heuristic search, simulated annealing and genetic algorithms. In all test cases studied there are new generation, load sites which can be connected to an existing main network: such connections may require more than one line, transformer addition, which makes the problem harder in the sense that more combinations have to be considered.
Resumo:
An earlier model underlying the foraging strategy of a pachycodyla apicalis ant is modified. The proposed algorithm incorporates key features of the tabu-search method in the development of a relatively simple but robust global ant colony optimization algorithm. Numerical results are reported to validate and demonstrate the feasibility and effectiveness of the proposed algorithm in solving electromagnetic (EM) design problems.
Resumo:
Alternative sampling procedures are compared to the pure random search method. It is shown that the efficiency of the algorithm can be improved with respect to the expected number of steps to reach an epsilon-neighborhood of the optimal point.
Resumo:
The Random Amplified Polymorphic DNA (RAPD) technique is powerful for DNA polymorphism determinations and is widely used in research involving different organisms, but it is known that RAPD can be affected by many factors that may result in false positive bands and non-reproducible assays. In this study, we analyzed the effect of several factors such as DNA template, primer and Taq DNA polymerase concentrations to optimize and standardize the RAPD technique for further genetic studies with Citrulus lanattus and Sesamum indicum L. The best combination of DNA, Taq DNA polymerase enzyme and primer concentrations in RAPD amplification procedures for sesame and watermelon genotypes was established.
Resumo:
Aiming to ensure greater reliability and consistency of data stored in the database, the data cleaning stage is set early in the process of Knowledge Discovery in Databases (KDD) and is responsible for eliminating problems and adjust the data for the later stages, especially for the stage of data mining. Such problems occur in the instance level and schema, namely, missing values, null values, duplicate tuples, values outside the domain, among others. Several algorithms were developed to perform the cleaning step in databases, some of them were developed specifically to work with the phonetics of words, since a word can be written in different ways. Within this perspective, this work presents as original contribution an optimization of algorithm for the detection of duplicate tuples in databases through phonetic based on multithreading without the need for trained data, as well as an independent environment of language to be supported for this. © 2011 IEEE.
Resumo:
In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.