281 resultados para Fe3 immobilized
Resumo:
Biochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an and logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean and functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.
Resumo:
Alkaline earth stannates have recently become important materials in ceramic technology due to its application as humidity sensor. In this work, alkaline earth stannates doped with Fe3+ were synthesized by the polymeric precursor method, with calcination at 300 A degrees C/7 h and between 400 and 1100 A degrees C/4 h. The powder precursors were characterized by TG/DTA after partial elimination of carbon. Characterization after the second calcination step was done by X-ray diffraction, infrared spectroscopy, and UV-vis spectroscopy. Results confirmed the formation of the SrSnO3:Fe with orthorhombic perovskite structure, besides SrCO3 as secondary phase. Crystallization occurred at 600 A degrees C, being much lower than the crystallization temperature of perovskites synthesized by solid state reaction. The analysis of TG curves indicated that the phase crystallization was preceded by two thermal decomposition steps. Carbonate elimination occurred at two different temperatures, around 800 A degrees C and above 1000 A degrees C.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
A new methodology for soluble oxalic acid determination in grass samples was developed using a two enzyme reactor in an FIA system. The reactor consisted of 3 U of oxalate oxidase and 100 U of peroxidase immobilized on Sorghum vulgare seeds activated with glutaraldehyde. The carbon dioxide was monitored spectrophotometrically, after reacting with an acid-base indicator (Bromocresol Purple) after it permeated through a PTFE membrane. A linear response range was observed between 0.25 and 1.00mmol l-1 of oxalic acid; the data was fit by the equation A=-0.8(±1.5)+ 57.2(±2.5)[oxalate], with a correlation coefficient of 0.9971 and a relative standard deviation of 2% for n=5. The variance for a 0.25 mmol l-1 oxalic acid standard solution was lower than 4% for 11 measurements. The FIA system allows analysis of 20 samples per hour without prior treatment. The proposed method showed a good correlation with that of the Sigma Kit.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Routine applications of DNA hybridization biosensors are often restricted by the need for regenerating the single-stranded (ss) probe for subsequent reuse. This note reports on a viable alternative to prolonged thermal or chemical regeneration schemes through the mechanical polishing of oligonucleotide-bulk-modified carbon composite electrodes. The surface of these biocomposite hybridization biosensors can be renewed rapidly and reproducibly by a simple extrusion/polishing protocol. The immobilized probe retains its hybridization activity on confinement in the interior of the carbon paste matrix, with the use of fresh surfaces erasing memory effects and restoring the original target response, to allow numerous hybridization/measurement cycles. We expect that such reusable nucleic acid modified composite electrodes can be designed for a wide variety of biosensing applications.
Resumo:
Invertase was immobilized on aminopropyl silica (APTS-SiO2) activated with humic substances (APTS-SiO2-HS) and on aminopropyl silica activated with glutaraldehyde (APTS-SiO2-GA). The resulting activity of both systems was compared. Humic substances (HS) used for the activation of the silica were extracted from soil of Cananéia, São Paulo State, Brazil, according to the procedure recommended by the International Humic Substances Society. Activity was determined by measuring the rate of formation of reduced sugars using the reaction with dinitrosalicylic acid (DNS). The amount of HS bound on the APTS-SiO2 was equal to 50 mg. The maximum amount of invertase immobilized on APTS-SiO2-HS was 15200 U/g while in the system APTS-SiO2-GA it was 13400 U/g. The experimental enzymatic activity was 3700 and 3300 U/g, for the systems APTS-SiO2-HS and APTS-SiO2-GA, respectively. Considering the increased amount and activity of immobilized enzyme compared with the glutaraldehyde method, it was concluded that this technique opens a new perspective in the preparation of supports for enzyme immobilization employing humic substances. © Springer-Verlag 2000.
Resumo:
The magnetic and structural properties of sol-gel derived organic/inorganic nanocomposites doped with Fe(II), Fe(III), Nd(III) and Eu (III) ions are discussed. These hybrids consist of poly(oxyethylene)-based chains grafted onto siloxane nanodomains by urea cross-linkages. Small angle X-ray scattering data show the presence of spatial correlations of siloxane domains embedded in the polymer matrix. The magnetic properties of rare-earth doped samples are determined by single ion crystal-field-splitted levels (Eu3+ J=0; Nd3+ J=9/2) and the small thermal irreversibility is mainly associated to structural effects. Fe2+ -doped samples behave as simple paramagnet with residual antiferromagnetic interactions. Fe3+-doped hybrids are much more complex, with magnetic hysterisis, exchange anisotropy and thermal irreversibility at low temperatures. Néel temperatures increase up to 14K for the highest (∼5.5%) Fe3+ mass concentration.
Resumo:
Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha-1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.
Resumo:
The TL, optical absorption (OA) and EPR properties of natural Brazilian alexandrite and chrysoberyl have been investigated. The TL measurements for natural alexandrite show five peaks between 100 and 450°C, with their emission spectrum having 370 and/or 570 nm components. The intensity of the 320°C TL peak was found to be enhanced with pre-annealing treatment, more prominently above 600°C. The OA and EPR measurements showed that this kind of heat treatment induces the Fe2→ Fe3+ conversion in the natural sample. Chrysoberyl samples exhibited the TL peaks at the same temperatures as alexandrite samples, but the glow curves were more than 200 times less intense than alexandrite ones.
Resumo:
Lipases are versatile enzymes regarding the range of reactions they catalyse and substrates on which they act. They are as well important as catalyst in organic synthesis. Their immobilization on appropriate supports confer them greater stability besides the possibility of operating in continuous reactors. In order to explore these abilities, the reactions involving hydrolysis of p-nitrophenyl acetate (PNPA) and transesterification of PNPA with n-butanol were chosen. Lipases from two different sources were assayed, namely: microbial (Candida rugosa, CRL, Sigma Type VII) and pancreatic (PPL, Sigma, Type 11). Two immobilization methods were also used, namely: 1) adsorption, using as support the following silica derivatives (150-300μm e 450μ): phenyl, epoxy, amino and without derivation, and 2) covalent binding, using glutaraldehyde as binding agent and silica amino as support. This later method led to better results. Hydrolytic activity was 6.1 U/gsupport for CRL and 0.97U/gsupport for PPL, and of transesterification, 2,8U/gsupport for CRL and 1,9U/gsupport for PPL. Stability of the immobilized enzyme as a function of temperature was evaluated for CRL at 40°C and 50°C and for PPL at 32°C and 40°C. The assays were initially carried out batchwise, both for soluble and immobilized enzymes, aiming to the obtention of parameters for the continues reactor. Lipases immobilized by covalent binding were used in the assays of operacional stability in continuos reactors. For PPL in aqueous medium, at 32°C, and CRL in organic medium at 40°C, both operating continuously, no significant loss of activity was detected along the analysis period of 17 days. In the case of CRL in aqueous medium at 40°C there was a loss of activity around 40% after 18 days. For PPL in organic medium at 40°C the loss was 33% after 20 days. Compairing both sources with each other, very different results were obtained. Higher activitiy was found for CRL, both for hydrolysis and for transesterification reactions, with higher stability in organic medium. PPL showed lower activity as well as higher stability in aqueous medium. The immobilization method by covalent binding showed to be the most appropriate. Immobilized lipases are therefore relatively stable both in aqueous and organic medium.