126 resultados para Estrogen Receptor beta
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background and aims Estrogen deficiency results in increased bone turnover and can lead to osteoporosis. Hormone replacement therapy (HRT) seems to be the most effective means of reducing bone loss and fractures. However, the effects of the period of HRT onset on bone tissue require further elucidation. This study aimed to evaluate the effects of different periods of HRT onset on the trabecular bone of ovariectomized rats.Methods Seventy-five ovariectomized Wistar rats were divided into five groups according to the onset of treatment. Each group was subdivided into experimental (E; n = 10) and control (C; n = 5), according to treatment with 17-beta-estradiol or vehicle alone (soybean oil), respectively, administered subcutaneously. The first group received treatment immediately post-surgery, while treatment in the remaining groups was initiated 1, 2, 3 and 4 weeks post-surgery. Euthanasia occurred at 9 weeks post-surgery. The left tibias were removed and prepared for histomorphometric analyses. The histomorphometric results were statistically analyzed by the Student's t test (p < 0.05).Results The percentage of trabecular bone was significantly greater in the first (p = 0.002) and second (p = 0.039) experimental subgroups compared with the control for the same period. In the experimental subgroups, the percentage of trabecular bone decreased according to the delay in HRT onset and was statistically significant (t = 3.367; p = 0.0023).Conclusion These findings indicate an increase in trabecular bone loss in tibia at 9 weeks post-ovariectomy. The period of HRT/E onset is important for preventing bone loss; however, despite its preventive effects, HRT/E does not restore lost bone.
Resumo:
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.