648 resultados para Endodontic cements
Resumo:
Objective. The purpose of this study was to evaluate the release of formaldehyde by some root canal filling materials. Study design. Two older endodontic sealers, AH 26 and Endomethasone, and 2 recently available sealers, AH Plus and Top Seal, were analyzed. Infrared and electronic spectroscopy were used to determine formaldehyde content after set of the materials. Results. Analysis showed that the AH 26 and Endomethasone sealers released formaldehyde. Although the AH Plus and Top Seal sealers have similar chemical composition, they released formaldehyde in a minimal concentration. Conclusions. The AH 26 and Endomethasone sealers released formaldehyde after setting; however, a minimum release was observed for the AH Plus and Top Seal sealers. Copyright © 1999 by Mosby, Inc.
Resumo:
Aim: The apical sealing ability of three different endodontic sealers was evaluated in extracted teeth using dye penetration. Methodology: The root canals of 99 extracted human maxillary central incisors were prepared sequentially 2 mm beyond the apical foramen with a size 55 Nitiflex file. The teeth were divided into three experimental groups and obturated by lateral condensation of cold gutta-percha and one of the following sealers: group 1, zinc oxide and eugenol sealer (Fill Canal); group 2, glass ionomer sealer (Ketac-Endo) and group 3, epoxy resin sealer (AH Plus). The teeth were covered with nail varnish to within 1 mm of the apical foramen and immersed in 2% methylene blue in a reduced pressure environment for 24h. After this period, the teeth were washed and cut longitudinally for apical leakage analysis. The values were obtained from the maximum depth of leakage as well as the average between the maximum and minimum values observed for each group. Results: Statistical evaluation of the results showed no significant difference in the leakage between Fill Canal and Ketac-Endo (P > 0.05). Leakage with AH Plus was significantly less (P < 0.01) than with the other sealers. Conclusions: All three sealers allowed some leakage to occur. Leakage with AH Plus was significantly different than with Fill Canal or Ketac-Endo.
Resumo:
Utilization of contemporary post and core systems has facilitated the aesthetic restoration of endodontically treated teeth. Light transmission and biocompatibility have been enhanced by the introduction of metal-free post systems. The periodontal and endodontic status, root length, and histological structure of the devitalized teeth must be considered in order to achieve successful restoration following endodontic treatment. This article presents various restorative criteria for the aesthetic placement and buildup of post and core materials, as well as the preservation of maximum coronal and root structure.
Resumo:
Aim: The aim of this study was to evaluate the influence of ultrasound during the removal of posts cemented with either zinc phosphate cement, glass ionomer cement or resin cement. Methodology: Eighty-four single-rooted teeth were prepared and after cementation of cast posts, they were randomly divided into six groups of 14. Groups 1, 2 and 3 did not receive ultrasonic vibration, whilst groups 4, 5 and 6 received ultrasonic vibration for 10 min. The force necessary for post removal was determined using a universal testing machine. Results were statistically analysed using ANOVA and Tukey tests (5%). Results: The application of ultrasonic vibration reduced the retention provided by zinc phosphate and glass ionomer cements by 39% and 33%, respectively. Conclusions: A statistically significant reduction in the force necessary to remove posts cemented with zinc phosphate and glass ionomer cements occurred following application of ultrasound. The application of ultrasonic vibration did not influence the retention of cast posts cemented with resin cement.
Resumo:
Eighty-four root canals of premolars from six dogs were left open for 7 days, and then sealed and followed for 45 days until periradicular periodontitis developed. The root canals were then treated endodontically using 5.25% sodium hypochlorite as the irrigating solution. After instrumentation, all root canals were filled with a calcium hydroxide-based antibacterial dressing (Calen PMCC or Calasept) that was left in place for 30 days. After this period the root canals were filled with gutta-percha cones and a root canal sealer (Sealapex or AH Plus)-group I: Calen PMCC + Sealapex; group II: Calasept + Sealapex; group III: Calen PMCC + AH Plus; and group IV: Calasept + AH Plus. Periapical radiographs of the teeth were made after root canal filling and after 90, 180, 270, and 360 days. Radiographic images were digitalized by scanning, and the Mocha program was used to measure the periapical lesions. Analysis showed that the lesions of groups I to III were statistically similar reduction in size, whereas group IV had a smaller reduction in lesion size (p < 0.05). Copyright © 2001 by The American Association of Endodontists.
Resumo:
The aim of this study was to evaluate the apical and periapical repair after root canal treatment of dogs' teeth with pulp necrosis and chronic periapical lesion using different root canal sealers. After periapical lesion induction, forty-four root canals of 3 dogs were submitted to biomechanical preparation using 5.25% sodium hypochlorite as an irrigating solution. A calcium hydroxide dressing (Calen PMCC) was applied for 15 days and the root canals were filled using the lateral condensation technique with gutta-percha points and Sealapex, AH Plus or Sealer Plus for sealing. After 180 days, the animals were sacrificed by anesthetic overdose and the obtained histological sections were stained with hematoxylin-eosin for optical microscopic analysis of the apical and periapical repair. The groups filled with Sealapex and AH Plus had better histological repair (p < 0.05) than the group filled with Sealer Plus, that had unsatisfactory results.
Resumo:
During the cementation of metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. This study evaluated the influence of chemical activation compared with dual-curing (chemical and light activation), on the hardness of four dual-curing resin cements. In a darkened environment, equal weight proportions of base and catalyst pastes of the cements Scotchbond Resin Cement, Variolink II, Enforce and Panavia F were mixed and inserted into moulds with cavities of 4 mm in diameter and 2 mm in height. Subsequently, the cements were: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated (dual-curing = dual-cured groups). The Vickers hardness number was measured at 1 hour, 24 hours and 7 days after the start time of cements' spatulation. For all the cements, the hardness values of self-cured groups were lower than those of the respective dual-cured groups at 1 hour and 24 hours. At 7 days, this behavior continued for Variolink II and Panavia F, whilst for Scotchbond Resin Cement and Enforce there was no statistical difference between the two activation modes. All cements showed a significant increase in their hardness values from 1 hour to 7 days for both activation modes. Of the self-cured groups, Scotchbond Resin Cement and Variolink II presented the highest and the lowest hardness values, respectively, for all three times tested. Within the limitations of this study, up to the time of 24 h, chemical activation alone was unable to promote similar hardness as to that obtained with dual-curing.
Resumo:
The aim of this study was to evaluate in vitro the antimicrobial activity of glass ionomer (GIC) and zinc oxide-eugenol (ZOE) cements against Candida albicans. Standardized GIC and ZOE specimens were maintained in contact with C. albicans suspension (1 x 10(6) cells/ml) at 37 degrees C for 24 h, 48 h or 7 days. A control group without any testing cement was included. After the incubation period, aliquots of 0.1 ml were plated on Sabouraud's agar, and then the number of colonies was counted. The results were expressed as values of logarithms of colony-forming units per milliliter (log CFU/mL) and were analyzed statistically by Kruskal-Wallis ANOVA. After 48 h of incubation, the ZOE group presented no growth of C. albicans. GIC and control groups presented similar mean values at all tested periods. According to the results obtained, it could be concluded that, under the experimental conditions, ZOE cement was more effective in vitro against C. albicans than GIC.
Resumo:
Aim: To evaluate the release of calcium ions, pH and conductivity of a new experimental dental cement (EC) and to compare them with those of mineral trioxide aggregate (MTA-Angelus). Methodology: Five samples of each cement were prepared using plastic tubes 1 mm in diameter and 10 mm long. Each sample was sealed in a test tube containing 10 mL deionized water which was analysed after 24, 48, 72, 96, 192, 240 and 360 h for pH, electrical conductivity and calcium release. The concentration of calcium ions was obtained through atomic absorption spectroscopy technique. The data were analysed statistically using the analysis of variance (ANOVA) and the Student's test (t-test). Results: The pH of the storage solutions was not affected by the material and the interaction of material with time (P > 0.05). However, the time of immersion was significant (P < 0.01) for both materials. For the electric conductivity and calcium release, the interaction of material with time was statistically significant (P < 0.01), indicating that EC and MTA-Angelus did not behave in a similar manner. Conclusions: The experimental cement released calcium and increased the pH of the storage solutions in a similar manner to MTA-Angelus. However, EC showed significantly higher calcium release than commercial MTA-Angelus after 24 h. © 2005 International Endodontic Journal.
Resumo:
This study evaluated the antibacterial activity of the glass-ionomer cements Vitrebond (3M ESPE), Ketac Molar (3M ESPE) and Fuji IX (GC America) against S mutans, S sobrinus, L acidophilus and A viscosus, using the agar diffusion test. Inocula were obtained by the seed of indicators cultures in BHI broth incubated at 37°C for 24 hours. Base layers containing 15 mL of BHI agar and 300 μL of each bacteria suspension were prepared in Petri dishes. Six wells measuring 4 mm in diameter were made in each plate and completely filled with one of the testing materials. A 0.2% chlorhexidine solution applied in round filter papers was used as control. Tests were performed 12 times for each material and bacteria strain. After incubation of the plates at 37°C for 24 hours, the zones of bacterial growth inhibition around the wells were measured. Overall, the results showed the following sequence of antibacterial activity: Vitrebond (despite the activation mode) > 0.2% chlorhexidine > Ketac Molar > Fuji IX, according to Kruskal-Wallis and Mann-Whitney statistical tests. This study confirmed significant antibacterial activity for two conventional glass-ionomers and one resin-modified glass-ionomer material. The resin-modified glass-ionomer cement Vitrebond, regardless of the activation mode, presented the best antibacterial activity against S mutans and S sobrinus. The antibacterial activity against A viscosus for Vitrebond was similar to 0.2% chlorhexidine, while light activation reduced its antibacterial activity against L acidophilus. ©Operative Dentistry, 2005.
Resumo:
In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS) of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm). Cements were either: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated through mylar strips (chemical and photo-activation = dual-cured groups) (n = 10). After a 24 h storage in 37 masculineC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It) and a zinc phosphate cement served as controls. Comparative analyses were performed: 1) between the activation modes for each dual-curing resin cement, using Students t test; 2) among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukeys test (alpha = 0.05). The dual-cured groups of Scotchbond Resin Cement (53.3 MPa), Variolink II (48.4 MPa) and Rely X (51.6 MPa) showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively) (p < 0.05). For Enforce (48.5 and 47.8 MPa) and Panavia F (44.0 and 43.3 MPa), no significant difference was found between the activation modes (p > 0.05). The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa) (p > 0.05), and higher DTS than that of zinc phosphate (4.2 MPa). Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05).
Resumo:
Objective: To investigate if formocresol, paramonochlorophenol, or calcium hydroxide modulate the genotoxic effects induced by the oxidatively damaging agent hydrogen peroxide (H 2O 2) or the alkylating agent methyl methanesulfonate (MMS) in vitro by using single cell gel (comet) assay. Study design: Chinese hamster ovary (CHO) cells in culture were exposed directly to formocresol, paramonochlorophenol, or calcium hydroxide (adjusted to 100 μg/mL) for 1 hour at 37°C. Subsequently the cultures were incubated with increasing concentrations (0-10 μmol/L) of MMS in phosphate-buffered solution (PBS) for 15 minutes at 37°C or of H 2O 2 at increasing concentrations (0-100 μmol/L) in distilled water for 5 minutes on ice. The negative control cells were treated with PBS for 1 hour at 37°C. The parameter from the comet assay (tail moment) was assessed by the Kruskal-Wallis nonparametric test followed by a post hoc analysis (Dunn test). Results: Clear concentration-related effects were observed for the genotoxin-exposed CHO cells. Increase of MMS-induced DNA damage was not significantly altered by the presence of the compounds tested. Similarly, no significant changes were observed when hydrogen peroxide was used with the endodontic compounds evaluated. Conclusion: Formocresol, paramonochlorophenol, and calcium hydroxide are not able to modulate alkylation-induced genotoxicity or oxidative DNA damage as depicted by the single cell gel (comet) assay. © 2006 Mosby, Inc. All rights reserved.
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
The purpose of this study was to evaluate the surface roughness of four conventional chemically cured glass ionomer cements (Fuji IX, Ketac Molar, Vidrion R and Vitromolar) commonly used in atraumatic restorative treatment (ART) immediately after material preparation. Twenty specimens of each glass ionomer cement were fabricated and surface roughness was measured after material setting. The specimens were further examined under scanning electron microscopy. Data were analyzed statistically by Kruskal-Wallis test and Mann-Whitney test at 5% significance level. Two-by-two comparisons showed statistically significant difference (p<0.05) between all materials, except for Ketac Molar and Vidrion R, which had statically similar results (p>0.05). Regarding their results of surface roughness, the materials can be presented in a crescent order, as follows: Ketac Molar < Vidrion R < Fuji IX < Vitromolar. In conclusion, from the tested glass ionomer cements, Fuji IX, Ketac Molar and Vidrion R presented acceptable surface roughness after setting reaction while Vitromolar showed remarkably higher surface roughness.
Resumo:
The aim of this study was to compare the bond strength to enamel between resin cements combined with total-etch and self-etch adhesive systems and a self-adhesive cement. Eighty bovine incisors had their buccal surface ground flat exposing a plane area in the enamel. Eighty Artglass resin cylinders measuring 3 mm in diameter and 4 mm in height were fabricated. The teeth were divided into eight groups of 10 teeth each and the resin cylinders were cemented with different adhesive systems and resin cements; G1: RelyX Unicem (self-adhesive cement); G2: H 3PO 4 + Single Bond + RelyX ARC; G3: AdheSE + Variolink II; G4: H 3PO 4 + Excite + Variolink II; G5: Xeno III + Enforce; G6: H 3PO 4 + Prime&Bond NT + Enforce; G7: Biatite Primers 1 and 2 + Bistite II DC; G8: H 3PO 4 + Bistite Primers 1 and 2 + Bistite II DC. After application of the adhesives, the cylinders were cemented according to manufacturer instructions. The specimens were submitted to 2000 thermal cycles at a temperature ranging from 5±5°C to 55±5°C, and shear bond strength was then tested at a variety of 1 mm/min. The data were analyzed by ANOVA and the Tukey's test (á=5%), obtaining a p value of 0.00. The following mean (±standard deviation) bond strength values were observed for each group: G1: 5.14(±0.99)a; G3: 16.23(±4.69)b; G7: 17.82(±3.66)b; G5: 18.48(±2.88)bc; G8: 20.15(±4.12)bc; G4: 22.85(±3.08)cd; G2: 24.96(±2.89)d; G6: 26.07(±1.69)d. Groups followed by the same letters did not differ significantly. For most of the resin cements tested, the application of adhesive systems using acid etching resulted in a higher bond strength when compared to the self-etch adhesive systems and to the self-adhesive cement.