197 resultados para Classical orthogonal polynomials of a discrete variable


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the symmetric Gaussian and L-Gaussian quadrature rules associated with twin periodic recurrence relations with possible variations in the initial coefficient. We show that the weights of the associated Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 4. We also show that the weights of the associated L-Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 5. Special cases of these quadrature rules are given. Finally, an easy to implement procedure for the evaluation of the nodes is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associated with an ordered sequence of an even number 2N of positive real numbers is a birth and death process (BDP) on {0, 1, 2,..., N} having these real numbers as its birth and death rates. We generate another birth and death process from this BDP on {0, 1, 2,..., 2N}. This can be further iterated. We illustrate with an example from tan(kz). In BDP, the decay parameter, viz., the largest non-zero eigenvalue is important in the study of convergence to stationarity. In this article, the smallest eigenvalue is found to be useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aspects of a discrete phase space formalism are presented and the discrete dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is discussed. A set of operator bases is defined in such a way that the Weyl-Wigner formalism is shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is shown not to be attained from discretization of the continuous case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivou-se comparar modelos de regressão aleatória com diferentes estruturas de variância residual, a fim de se buscar a melhor modelagem para a característica tamanho da leitegada ao nascer (TLN). Utilizaram-se 1.701 registros de TLN, que foram analisados por meio de modelo animal, unicaracterística, de regressão aleatória. As regressões fixa e aleatórias foram representadas por funções contínuas sobre a ordem de parto, ajustadas por polinômios ortogonais de Legendre de ordem 3. Para averiguar a melhor modelagem para a variância residual, considerou-se a heterogeneidade de variância por meio de 1 a 7 classes de variância residual. O modelo geral de análise incluiu grupo de contemporâneo como efeito fixo; os coeficientes de regressão fixa para modelar a trajetória média da população; os coeficientes de regressão aleatória do efeito genético aditivo-direto, do comum-de-leitegada e do de ambiente permanente de animal; e o efeito aleatório residual. O teste da razão de verossimilhança, o critério de informação de Akaike e o critério de informação bayesiano de Schwarz apontaram o modelo que considerou homogeneidade de variância como o que proporcionou melhor ajuste aos dados utilizados. As herdabilidades obtidas foram próximas a zero (0,002 a 0,006). O efeito de ambiente permanente foi crescente da 1ª (0,06) à 5ª (0,28) ordem, mas decrescente desse ponto até a 7ª ordem (0,18). O comum-de-leitegada apresentou valores baixos (0,01 a 0,02). A utilização de homogeneidade de variância residual foi mais adequada para modelar as variâncias associadas à característica tamanho da leitegada ao nascer nesse conjunto de dado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acinic cell carcinoma (ACC) is a rare salivary gland tumour, making up 4% of all minor salivary gland tumours. Typically, it is composed of acinic cells although transitional and duct-like cells are also identified. In the present study, a panel of antibodies was applied to eight minor salivary gland ACCs. Antibodies tested were: cytokeratins 7, 8, 13, 14, 18, 19, vimentin and actin (HHF35). Immunohistochemical staining revealed that cytokeratin 8, among the tested antibodies, was the more specific to neoplastic cells with a pattern of distribution quite variable and peculiar. This staining may be useful in the recognition of neoplastic acinic cells. (C) 1997 Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two applications of the modified Chebyshev algorithm are considered. The first application deals with the generation of orthogonal polynomials associated with a weight function having singularities on or near the end points of the interval of orthogonality. The other application involves the generation of real Szego polynomials.