185 resultados para Biomass burning
Resumo:
The family Piperaceae contains nearly 2000 species, most of them distributed in two genera, Piper and Peperomia. In Brazil circa 170 Piper species are found, mainly in tropical areas Their use ranges from flavoring and culinary to raw material for pharmaceutical and cosmetic industry. One of these species, Piper callosum, is used in folk medicine in the Amazon area. The objective of this study was to evaluate the production of biomass (aerial parts) as well as yield and composition of the essential oil from the leaves, according to different spacing between cultivated plants at Embrapa Western Amazon, in Manaus, State of Amazonas, Brazil. The experimental design was randomized blocks, with four treatments and seven replicates with six plants. Biomass production was inversely proportional to the spatial arrangements, with the greatest biomass production (1034.93 kg/ha) in the shortest spacing (E1), although no statistical difference was verified between E3 and E4. The same response was observed for the production of essential oil. The chemical composition of the oil was not affected by spacing, and major compounds found were safrole (59.1%), beta-pinene (8.3%), alpha-pinene (6.5%), methyl eugenol (6.3%) and 1,8-cineole (4.1).
Biomass and yield of peanut grown on tropical soil amended with sewage sludge contaminated with lead
Resumo:
Application of sewage sludge with high lead (Pb) contents may pollute soils and contaminate crops. The objective of this work was to evaluate peanut responses to application of sewage sludge with varying Pb contents in order to supply phosphorus (P) to the plant. A greenhouse experiment was carried out with peanut grown on soil sample from a medium-textured Haplustox. Treatments were arranged in 3 × 2 + 2 factorial scheme, replicated three times, distributed in randomized block design, and consisted of: three Pb rates applied to soil with sewage sludge (3, 21, and 42 mg kg-1) × two times of sewage sludge application (30 days before peanut sowing and at the day of the sowing) + mineral fertilization + control (without sewage sludge and mineral fertilization). Sewage sludge was efficient to supply P to peanut. Sewage sludge containing high rates of Pb, when applied, did not harm biomass and yield of the plant, but increased HCl-extractable Pb in soil and Pb content in shoot, roots, and pod husks. Increase of Pb content in pod husks may represent contamination risk of kernels and their products with fragments from husks detached during manipulation or industrial processing of peanuts. © 2012 Fábio Camilotti et al.
Resumo:
Questions: Grasslands are usually neglected as potential carbon stocks, partially due to the lack of studies on biomass and carbon dynamics in tropical grasslands. What is the importance of Brazilian tropical wet grasslands as carbon sinks? Does fire frequency and season affect biomass and carbon allocation in Brazilian wet grasslands? Location: Wet grasslands, tropical savanna, Jalapão, Tocantins, northern Brazil. Methods: We determined biomass above- and below-ground, estimated carbon stocks in biennially burned plots (B2) and plots excluded from fire for 4 yr (B4). Moreover, we determined biomass in both rainy and dry seasons. Samples were 0.25 m × 0.25 m × 0.2 m (eight samples per treatment, applying a nested design, total of 48 samples). The biomass was classified in above-ground graminoids, forbs and dead matter, and below-ground roots and other below-ground organs. We used ANOVA to compare variables between treatments and seasons. Results: More than 40% of the total biomass and carbon stocks were located below-ground, mostly in roots. A high proportion of dead biomass (B4) was found in the above-ground material, probably due to low decomposition rates and consequent accumulation over the years. Although these grasslands do not experience water stress, we found significant evidence of resource re-allocation from below-ground organs to the above-ground biomass in the rainy season. Conclusions: We found more dead biomass in the rainy season, probably due to low decomposition rates, which can increase fire risk in these grasslands during the following dry season. These tropical wet grasslands stored high amounts of carbon (621 to 716 g C.m-2), mostly in the roots. Thus, policymakers should consider tropical grasslands as potential carbon stocks, since they are one of the most threatened and unprotected ecosystems in Brazil. © 2012 International Association for Vegetation Science.
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.
Resumo:
Brazil is a major sugarcane producer and São Paulo State cultivates 5.5 million hectares, close to 50% of Brazil's sugarcane area. The rapid increase in production has brought into question the sustainability of biofuels, especially considering the greenhouse gas (GHG) emissions associated to the agricultural sector. Despite the significant progress towards the green harvest practices, 1.67 million hectares were still burned in São Paulo State during the 2011 harvest season. Here an emissions inventory for the life cycle of sugarcane agricultural production is estimated using IPCC methodologies, according to the agriculture survey data and remote sensing database. Our hypothesis is that 1.67 million hectares shall be converted from burned to green harvest scenarios up to years 2021 (rate 1), 2014 (rate 2) or 2029 (rate 3). Those conversions would represent a significant GHG mitigation, ranging from 50.5 to 70.9 megatons of carbon dioxide equivalent (Mt CO2eq) up to 2050, depending on the conversion rate and the green harvest systems adopted: conventional (scenario S1) or conservationist management (scenario S2). We show that a green harvest scenario where crop rotation and reduced soil tillage are practiced has a higher mitigation potential (70.9 Mt CO2eq), which is already practiced in some of the sugarcane areas. Here we support the decision to not just stop burning prior to harvest, but also to consider other better practices in sugarcane areas to have a more sustainable sugarcane based ethanol production in the most dense cultivated sugarcane region in Brazil. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The biosorption of Cd(II) and Pb(II) ions on biomass and exopolysaccharide (EPS) produced by Colletotrichum sp. fungus has been investigated as a function of contact time, initial pH, initial metal ion concentration, and initial adsorbent concentration in a batch system. Adsorption equilibrium was described by Freundlich and Langmuir isotherms. Adsorption was characterized through granulometry, SEM and EDX analysis. Then, studies were performed to regenerate the adsorbent. Biosorption of metals by biomass and EPS were best described by the Langmuir and Freundlich isotherm, respectively. Results of thermodynamic investigations showed that adsorption reactions were spontaneous (ΔG° < 0), exothermal, and mainly physical. The EPS was able to remove 79 and 98% of cadmium and lead, respectively, and the biomass removed 85 and 84% of cadmium and lead, respectively, in a solution with initial concentration 100 mg L-1, and the four adsorption-desorption cycles of all adsorbents showed up with great regenerative capacity and relative stability after these four cycles, the high potential of these biological materials in sorption has been shown. © 2013 Copyright Balaban Desalination Publications.
Resumo:
Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566kgha-1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127kgha-1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193Mg ha-1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA