134 resultados para BIOFILM FORMATION
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Background: The number of Escherichia coli in the gut of Crohn's disease (CD) patients is higher than that of normal subjects, but the virulence potential of these bacteria is not fully known. Previous studies have shown that these E. coli are closely related to extraintestinal pathogenic categories (ExPEC), are able to invade epithelial cells, and usually do not produce exotoxins. We report here the detection, in a CD patient, of an E. coli which belongs to a classical enteropathogenic (EPEC) serotype and displays virulence markers of enteroinvasive (EIEC), enteroaggregative (EAEC) and enterohemorrhagic (EHEC) pathotypes. Methods: The E. coli strain was isolated, in 2009, by classical bacteriological procedures from a 56 year old woman who underwent ileo-terminal resection 1 year before, due to intestinal obstruction. The bacterial characterization was carried out by in vitro adhesion and invasion assays to cultured epithelial cells and macrophages and screening by PCR to identify virulence genetic markers of diarrheogenic E. coli (DEC) and to detect one of the gene combinations which define the phylogroups of the E. coli reference (EcoR) collection. The strain was also tested for the ability to produce biofilm and shiga cytotoxins and had its whole genome sequenced by Ion Torrent Sequencing Technology. Results: The studied strain, which was detected both in ileum biopsies and the stools of the patient, displayed the aggregative adherence (AA) phenotype to Hep-2 cells and an ability to enter Caco-2 cells 3x as high as that of EIEC reference strain and 89% of that of the prototype AIEC LF82 strain. Although it could invade cultured macrophages, the strain was unable to replicate inside these cells. PCR screening revealed the presence of eae, aggR and stx1. Tests with bacterial culture supernatants in Vero cells demonstrating cytotoxicity suggested the production of Stx1. In addition, the strain revealed to be a strong biofilm producer, belonged to the B2 EcoR phylogroup, to the O126:H27 serogroup and to the multilocus sequencing type (MLST) ST3057. The 2 later features were deduced from the whole genome sequence of the strain. Conclusions: The characterization of this E. coli isolate from a CD patient revealed a combination of virulence markers of distinct DEC pathotypes, namely eae and stx1 of EHEC, AA, aggR and biofilm formation of EAEC, and invasiveness of EIEC. These features along with its serotype and phylogroup identity seem to suggest a potential to be involved in CD, an observation which should be tested with additional studies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Our understanding of dental plaque biofilm has evolved since the nonspecific plaque hypothesis that considered plaque as a nonspecific mass of native microorganisms that, because of lack of oral hygiene, builds up in proportions great enough to overcome the host resistance threshold and affect the tooth structure and tooth supporting tissues. A great diversity of microorganisms-over 700 species-was detected in the oral cavity, and evidence shows that the investigation of specific microorganisms or associations of microorganisms as etiological agents for periodontal diseases and caries is not a simplistic approach. Although clinical evidence shows that oral mechanical hygiene is fundamental to prevent and control caries and periodontal disease, it is important to highlight that optimal control is not achieved by most individuals. Thus the complementary use of chemotherapeutic agents has been investigated as a way to overcome the deficiencies of mechanical oral hygiene habits, insofar as they reduce both plaque formation and gingival inflammation, and represent a valid strategy to change the biofilm and maintain dental and periodontal health. The role of the dental professional is to monitor patients and offer them the best recommendations to preserve oral health throughout their life. With this in mind, chemical control should be indicated as part of daily oral hygiene, together with mechanical procedures, for all individuals who present supragingival and/or subgingival biofilm, taking into account age, physical and/or psychological limitations, allergies, and other factors.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)