208 resultados para Artificial satellites in telecommunications
Resumo:
The objective of this project was to monitor the satellites of the Global Positioning System (GPS) from a fixed point on Earth and to verify the rate of recurrence respect to their rotation and displacement. A topographic GPS signal receiver connected to a personal computer was used to recorded, for five days, the displacement of the satellites. This work was based on the fact that many literature references state that satellites complete one orbit around the Earth every 12 hours, then, it is assumed that the satellite would be seen twice in a day from the same fixed point on Earth.Although, this does not occur, as thise time interval correspond to 12 hours sidereal time and not solar time. In addition, this study was carried out in order toconfirm and update the information related to the number of satellites in operation today, found to be 31. In that sense, some references concerning the space segment of this system were defined in details.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The evolution in telecommunications with the extensive use of optical fiber following the technological expansion and data transmission demand becomes a necessity today. In this paper a literature review with technical concepts, feasibility of projects and applications in data collection with comparisons and highlights of the current situation of this advance is presented. The benefits of using optical fiber and the advantages of FTTH architecture are identified, as well as concrete and devised projects that make this theme reality and future prospects in the continuity of speed increase and allowed broadcasts growth
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to achieve a better understanding about the foraging behavior of leaf-cutter ant (Atta sexdens rubropilosa Forel) workers with respect to defoliation sites in plants. To accomplish that, artificial plants 70 cm in height were prepared and divided into four levels (heights), having natural plant leaves attached to them. Evaluations during the bioassays included the number of leaves dropped by the ants, as well as the percentage of plant mass removed. In all replicates, it became evident that the most exploited plant site is the apical region, which significantly differed from other plant levels.
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
This gaper demonstrates that artificial neural networks can be used effectively for estimation of parameters related to study of atmospheric conditions to high voltage substations design. Specifically, the neural networks are used to compute the variation of electrical field intensity and critical disruptive voltage in substations taking into account several atmospheric factors, such as pressure, temperature, humidity, so on. Examples of simulation of tests are presented to validate the proposed approach. The results that were obtained by experimental evidences and numerical simulations allowed the verification of the influence of the atmospheric conditions on design of substations concerning lightning.
Resumo:
The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.
Resumo:
Esse trabalho tem por objetivo o desenvolvimento de um sistema inteligente para detecção da queima no processo de retificação tangencial plana através da utilização de uma rede neural perceptron multi camadas, treinada para generalizar o processo e, conseqüentemente, obter o limiar de queima. em geral, a ocorrência da queima no processo de retificação pode ser detectada pelos parâmetros DPO e FKS. Porém esses parâmetros não são eficientes nas condições de usinagem usadas nesse trabalho. Os sinais de emissão acústica e potência elétrica do motor de acionamento do rebolo são variáveis de entrada e a variável de saída é a ocorrência da queima. No trabalho experimental, foram empregados um tipo de aço (ABNT 1045 temperado) e um tipo de rebolo denominado TARGA, modelo ART 3TG80.3 NVHB.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.