568 resultados para Acrylic resin materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study examined the differences in fluoride release and recharge among four restorative materials following treatment with APF or neutral fluoride gel for one or four minutes. Specimens were immersed in 2 mL of deionized water, while fluoride release was measured at 24-hour intervals for 15 days using an ion-selective electrode and analyzer. The materials were then treated with the fluoride gels. The fluoride release was measured for 15 days. ANOVA (p<0.05) showed higher fluoride release for Ketac-Fil before fluoride application and for Vitremer and Fuji 11 LC after application of APF gel. APF gel yielded higher fluoride release when compared to neutral gel, regardless of the material. Fluoride recharge and release was greater after the four-minute APF gel application, with no difference between the times of application for the neutral gel (p>0.05), except for Ketac-Fil. The pattern of release before and after application of the gels was similar and was higher at day 16 compared to day one for the APF gel for resin materials, with higher release at day 15 compared to the initial for Fuji 11 LC and Vitremer. Et was concluded that RM-GICs were the most effective materials with regards to fluoride release after application of APF gel for four minutes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statement of problem. Microwave irradiation has been suggested for denture disinfection. However, the effect of this procedure on the hardness and bond strength between resilient liners and denture base acrylic resin is not known.Purpose. This study evaluated the effect of water storage time and microwave disinfection on the hardness and peel bond strength of 2 silicone resilient lining materials to a heat-polymerized acrylic resin.Material and methods. Acrylic resin (Lucitone 199) specimens (75 X 10 X 3 mm) were stored in water at 37 degrees C (2 or 30 days) before bonding (n = 160). The resilient lining materials (GC Reline Extra Soft and Dentusil) were bonded to the denture base and divided into the following 4 groups (n = 10): Tests performed immediately after bonding (control); specimens immersed in water (200 mL) and irradiated twice, with 650 W for 6 minutes; specimens irradiated daily for 7 total cycles of disinfection; specimens immersed in water (37 degrees C) for 7 days. Specimens were submitted to a 180-degree peel test (at a crosshead speed of 10 mm/min) and the failure values (MPa) and mode of failure were recorded. Pretreatment and posttreatment hardness measurements (Shore A) of the resilient materials were also performed. Three-way analysis of variance, followed by the Tukey HSD test, was performed (alpha=.05).Results. The analysis revealed that, for all conditions, the mean failure strengths of GC Reline Extra Soft (0.95-1.19 MPa) were significantly higher (P<.001) than those of Dentusil (0.45-0.50 MPa). The adhesion of the liners was not adversely affected by water storage time of Lucitone 199 or microwave disinfection. All peel test failures were cohesive. There was a small but significant difference (P<.001) between the pretreatment (34.33 Shore A) and posttreatment (38.69 Shore A) hardness measurements.Conclusion. Microwave disinfection did not compromise the hardness of either resilient liners or their adhesion to the denture base resin Lucitone 199.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of microwave disinfection (650 W/6 min) on the flexural strength of five hard chairside reline resins (Kooliner, Duraliner II, Tokuso Rebase Fast, Ufi Get Hard, New Truliner) and one denture base resin (Lucitone 550).Methods: Thirty-two specimens (3.1x10x64 mm) from each acrylic resin were produced and divided into four groups of eight specimens each. The flexural test was performed after polymerization (G1), after two cycles of microwave disinfection (G2), after 7 days storage in water at 37 degrees C (G3) and after seven cycles of microwave disinfection (G4). Specimens from group G4 were microwaved daily being stored in water at 37 degrees C between exposures. The specimens were placed in three-point bend fixture in a MTS machine and loaded until failure. The flexural values (MPa) were submitted to ANOVA and Tukey's test (p=0.05).Results: Two cycles of microwave disinfection promoted a significant increase in flexural strength for materials Kooliner and Lucitone 550. After seven cycles of microwave disinfection, materials Kooliner and New Truliner showed a significant increase (p<0.05) in flexural values. The flexural strength of the material Tokuso Rebase was not significantly affected by microwave irradiation. Seven cycles of microwave disinfection resulted in a significant decrease in the flexural strength of material Duraliner II. Material Ufi Get Hard was the only resin detrimentally affected by microwave disinfection after two and seven cycles.Conclusions: Microwave disinfection did not adversely affect the flexural strength of all tested materials with the exception of material Ufi Get Hard. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Direct relining of dentures made with hard chairside reline resins is faster than laboratory-processed reline systems and the patient is not without the prosthesis for the time necessary to perform the laboratory procedures. However, a weak bond between the autopolymerizing acrylic reline resins and the denture base material has been observed. This study evaluated the effect of six different surface treatments on the bond strength between a hard chairside reline acrylic resin and ia heat-cured acrylic resin. Specimens of the heat-cured acrylic resin were divided into seven groups. one of these groups remained intact. In the other groups, a 10-mm square section was removed from the centre of each specimen. The bonding surfaces were then treated with (i) methyl methacrylate monomer, (ii) isobutyl methacrylate monomer, (iii) chloroform, (iv) acetone, (v) experimental adhesive and (vi) no surface treatment-control group. Kooliner acrylic resin was packed,into the square sections and polymerized. The bonding strength was evaluated by a three-point loading test. The results were submitted to one-way analysis of variance (ANOVA) followed by a Tukey multiple range test at a 5% level of significance. No significant difference was found between the surface treatment with Lucitone 550 monomer or chloroform, but both were stronger than the majority of the other groups. The bond strength provided by all the surface treatments was lower than that of the intact heat-cured resin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: The purpose of this in vitro study was to compare the dimensional accuracy of a stone index and of 3 impression techniques (tapered impression copings, squared impression copings, and squared impression copings splinted with acrylic resin) associated with 3 pouring techniques (conventional, pouring using latex tubes fitted onto analogs, and pouring after joining the analogs with acrylic resin) for implant-supported prostheses. Materials and Methods: A mandibular brass cast with 4 stainless steel implant-abutment analogs, a framework, and 2 aluminum custom trays were fabricated. Polyether impression material was used for all impressions. Ten groups were formed (a control group and 9 test groups formed by combining each pouring technique and impression technique). Five casts were made per group for a total of 50 casts and 200 gap values (1 gap value for each implant-abutment analog). Results: The mean gap value with the index technique was 27.07 mu m. With the conventional pouring technique, the mean gap values were 116.97 mu m for the tapered group, 5784 mu m for the squared group, and 73.17 mu m for the squared splinted group. With pouring using latex tubes, the mean gap values were 65.69 mu m for the tapered group, 38.03 mu m for the squared group, and 82.47 mu m for the squared splinted group. With pouring after joining the analogs with acrylic resin, the mean gap values were 141.12 jum for the tapered group, 74.19 mu m for the squared group, and 104.67 mu m for the squared splinted group. No significant difference was detected among Index, squarellatex techniques, and master cast (P > .05). Conclusions: The most accurate impression technique utilized squared copings. The most accurate pouring technique for making the impression with tapered or squared copings utilized latex tubes. The pouring did not influence the accuracy of the stone casts when using splinted squared impression copings. Either the index technique or the use of squared coping combined with the latex-tube pouring technique are preferred methods for making implant-supported fixed restorations with dimensional accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The disinfection of dental prostheses by immersion in a chemical solution should be capable of rapid inactivation of pathogenic microorganisms, without causing any adverse effect on the denture base resins. This study evaluated the effect of disinfection immersion on the transverse strength of two heat-cured resins. The denture base resins (Lucitone 550 and QC 20) were polymerized according to the manufacturers' instructions. After polymerization, the specimens were polished, and then stored in water at 37 degreesC for 50 +/- 2 h prior immersion in one of the following solutions for 10 min: 4% chlorhexidine, 1% sodium hypochlorite and 3.78% sodium perborate. The specimens were submitted to disinfection twice, simulating when dentures come from the patient and before being returned to the patient. Ten specimens were made for each group. The transverse strength was evaluated by a 3-point bend test. The flexural strength of the two denture base acrylic resins evaluated remained unaffected after immersion in the three solutions evaluated. In general, the QC 20 resin specimens exhibited lower transverse strength than the Lucitone 550 resin specimens, regardless of immersion solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)