284 resultados para sodium amminepentacyanoferrate
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We determined the effects of DuP753 and PD123319 (both nonpeptides and selective antagonists of the AT(1) and AT(2) angiotensin receptors, respectively), and [Sar(1), Ala(8)]ANG II (a non-selective peptide antagonist of angiotensin receptors) on water and 3%NaCl intake induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of sodium-depleted Holtzman rats weighing 250-300 g. Twenty hours before the experiments, the rats were depleted of sodium using furosemide (10 ng/rat, sc). The volume of drug solution injected was 0.5 mu l over a period of 10-15 sec. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2.0 h. Pre-treatment with DuP753 (14 rats) at a dose of 60 ng completely abolished the water intake induced by injection of 12 ng of ANG II (15 rats) (6.4 +/- 0.6 vs 1.4 +/- 0.3 ml/2 h), where [Sar(1), Ala(8)]ANG II (12 rats) and PD123319 (10 rats) at the doses of 60 ng partially blocked water intake (6.4 +/- 0.6 vs 2.9 +/- 0.5 and 2.7 +/- 0.2 ml/2 h, respectively). In the same animals, [Sar(1), Ala(8)]ANG II, DuP753, and PD123319 blocked the sodium intake induced by ANG II (9.2 +/- 1.6 vs 3.3 +/- 0.6, 1.8 +/- 0.3, and 1.4 +/- 0.2 ml/2 h, respectively). These results indicate that both DuP753 and PD123319, administered into the PVN, blocked the water and sodium intake induced by administration of ANG II into the same site.
Resumo:
Products from the spontaneous reaction of a long-chain arenediazonium salt, 2,6-dimethyl-4-hexadecylbenzenediazonium tetrafluoroborate(16-ArN2BF4), in aqueous micellar solutions of sodium dodecyl sulfate (SDS)? are used to estimate the local concentration of chloride and bromide ions at the micellar surface. The arenediazonium ion, 16-ArN2+, which is totally bound to the SDS micelle, reacts by rate-determining loss of N-2 to give an aryl cation that traps available nucleophiles, i,e., H2O, Cl-, and Br-, to give stable phenol, 16-ArOH, and halobenzene products, 16-ArCl and 16-ArBr, respectively. Product yields, determined by HPLC, are related to local concentrations using calibration curves obtained from independent standards. The local concentrations determined by this method are consistent with co-ion concentrations calculated, using a cell model, by numerical integration of the Poisson-Boltzmann equation (PBE) taking into account salt-induced micellar growth. The salt dependence of the intel facial concentrations of Cl- and Br- are identical. indicating no specific interactions in the interfacial co-ion compartment. PBE calculations predict that, in micellar SDS, increasing the concentration of a particular halide salt (NaX) at constant concentration of another halide (NaY) should result in an increase in the local concentrations of both co-ions. Using this chemical-trapping method, this prediction was demonstrated experimentally.
Resumo:
In this study we investigated the influence of a ventromedial hypothalamus (VMH) lesion with ibotenic acid on water and sodium intake and presser responses induced by combined treatment of the median preoptic nucleus (MnPO) with angiotensin Il (ANG II) and adrenergic agonists (phenylephrine, norepinephrine, isoproterenol and clonidine). Male Holtzman rats with a stainless steel cannula implanted into the MnPO and bilateral sham (vehicle) or VMH lesions with ibotenic acid were used. The ingestion of water and sodium and mean arterial pressure (MAP) were determined in separate groups submitted to sodium depletion with the diuretic furosemide (20 mg/rat). ANG II (10 pmol) injection into the MnPO of sham-lesioned rats induced water and sodium intake and presser responses. VMH-lesion reduced ANG II-induced water intake and increased saline intake, In sham rats phenylephrine (80 nmol) into MnPO increased, whereas norepinephrine (80 nmol) and clonidine (40 nmol) reduced ANG II-induced water intake while sodium intake was reduced only by clonidine into MnPO. In VMH-lesioned rats, phenylephrine reduced, noradrenaline increased and clonidine produced no effect on ANG II-induced water intake. In lesioned rats ANG II-induced sodium intake was reduced by phenylephrine and noradrenaline, whereas clonidine produced no change. ANG II-induced presser response was reduced in VMH-lesioned rats, but the presser response combining ANG II and phenylephrine or noradrenaline in VMH-lesioned rats was bigger than sham rats. These results show that the VMH is important for the changes in water and sodium intake and cardiovascular responses induced by angiotensinergic and adrenergic activation of the MnPO. (C) 1997 Elsevier B.V. B.V.
Resumo:
The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Dynamic light scattering, surface tension, and clouding temperature have been monitored to elucidate the solution properties of mixed micelles formed between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant pentaethylene glycol mono-n-dodecyl ether (C12E5) over a wide range of surfactant concentration and temperature. Addition of 0.1 M NaCl shifts the relaxational modes to higher frequency and lowers the clouding temperature (T-c) of the nonionic surfactant solution by about 1 degrees C compared to the salt-free system. T-c for the mixed surfactant solutions is higher than that of the binary C12E5 solutions and depends sensitively on the concentration of the two surfactants but increases only slightly when the total surfactant concentration is increased at a given molar C12E5/SDS concentration ratio. With C12E5/SDS = 5.7, for example, T-c is 46.0 and 47.5 degrees C, respectively, at 5 and 70 mM of C12E5 the mixed solutions are homogeneous and stable and contain nonspherical micelles, which are close to monodisperse over a range of surfactant concentrations and temperature. The mixed system has a lower Krafft point than binary SDS solutions and shows an approximately ideal behavior in contrast to the binary C12E5 solution. The hydrodynamic radius (RH) of the mixed micelle increases with temperature as do C12E5 micelles in the binary solutions and also with increasing C12E5/SDS ratio. At 25 degrees C, the critical micelle concentration of the mixed solution lies between those of the individual surfactants and decreases as the C12E5/SDS ratio is increased.
Resumo:
The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.
Resumo:
In this-study we investigated the influence of electrolytic lesion of the lateral hypothalamus (LH) on the water and salt appetite, and the natriuretic, diuretic and cardiovascular effects induced by angiotensinergic, cholinergic and noradrenergic stimulation of the median preoptic nucleus (MnPO) in rats. Male Holtzman rats were implanted with a cannula into the MnPO. Other groups of sham- and LH-lesioned rats received a stainless steel cannula implanted into the MnPO. ANGII injection into the MnPO induced water and sodium intake, and natriuretic, diuretic, presser and tachycardic responses. Carbachol induced water intake, and natriuretic, presser and bradycardic responses, whereas noradrenaline increased urine, sodium excretion and blood pressure, and induced bradycardia. In rats submitted to LH-lesion only, water and sodium intake was reduced compared with sham rats. LH lesion also reduced the sodium ingestion induced by ANGII (12 ng) into the MnPO. In LH-lesioned rats, the dipsogenic, diuretic and presser responses induced by ANGII (12 ng), carbachol (2 nmol) and noradrenaline (20 nmol) injection into the MnPO were reduced. The same occurred with sodium excretion when carbachol (2 nmol) and noradrenaline (20 nmol) were injected into the MnPO of LH-lesioned rats, whereas ANGII(12 ng) induced an increase in sodium excretion. These data show that electrolytic lesion of the LH reduces fluid and sodium intake, and presser responses to angiotensinergic, cholinergic and noradrenergic activation of the MnPO. LH involvement with MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested.
Resumo:
We investigated the effects of estrogen on sodium intake and excretion induced by angiotensin II (ANG II), atrial natriuretic peptide (ANP) or ANG II plus ANP injected into the median preoptic nucleus (MnPO). Female Holtzman rats weighing 250-300 g were used. Sodium ingestion and excretion 120 min after the injection of 0.5 mu l of 0.15 M NaCl into the MnPO were 0.3 +/- 0.1 ml (N = 12) and 29 +/- 7 mu Eq in intact rats, 0.5 +/- 0.2 ml (N = 10) and 27 +/- 6 mu Eq in ovariectomized rats, and 0.2 +/- 0.08 (N = 11) and 38 +/- 8 mu Eq in estrogen-treated ovariectomized (50 mu g/day for 21 days) rats, respectively. ANG II (21 mu M) injection in intact, ovariectomized, and estrogen-treated ovariectomized rats increased sodium intake (3.8 +/- 0.4, 1.8 +/- 0.3 and 1.2 +/- 0.2 ml/120 min, respectively) (N = 11) and increased sodium excretion (166 +/- 18, 82 +/- 22 and 86 +/- 12 mu Eq/120 min, respectively) (N = 11). ANP (65 mu M) injection in intact (N = 11), ovariectomized(N = 10)and estrogen-treated ovariectomized (N = 10) rats increased sodium intake (1.4 +/- 0.2, 1.8 +/- 0.3, and 1.7 +/- 0.3 ml/120 min, respectively) and sodium excretion (178 +/- 19, 187 +/- 9, and 232 +/- 29 mu Eq/120 min, respectively). Concomitant injection of ANG II and ANP into the MnPO of intact (N = 12), ovariectomized (N = 10) and estrogentreated ovariectomized (N = 10) rats caused smaller effects than those produced by each peptide given alone: 1.3 +/- 0.2, 0.9 +/- 0.2 and 0.3 +/- 0.1 ml/120 min for sodium intake, respectively, and 86 +/- 9, 58 +/- 7, and 22 +/- 4 mu Eq/120 min for sodium excretion, respectively. Taken together, these results demonstrate that there is an antagonistic interaction of ANP and ANG II on sodium intake and excretion, and that reproductive hormones affect this interaction.
Resumo:
The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of' the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl Sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate- 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate-, 2-hydroxy-5-(2-diniethylhexadecylammoniumundecanoyl)betizoate; 2-hydroxy-5-acetylbenzoic acids and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pKap. The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of' the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pKap's of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electrostatic interactions govern most properties of polyelectrolyte films, as in the photoinduced bire-fringence of azo-containing polymers. In this paper we report a systematic investigation of optical storage characteristics of cast and layer-by-layer (LbL) films of poly[1 -[4-(3-carboxy-4 hydroxypheny-lazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). Birefringence was photoinduced faster in PAZO cast films prepared at high pHs, with the characteristic writing times decreasing almost linearly with the pH in the range between 4 and 9. This was attributed to an increased free volume for the azochromophores with the enhanced electrostatic repulsion in PAZO charged to a greater extent. In contrast, in LbL films of PAZO alternated with poly(allylamine hydrochloride) (PAH), the electrostatic interactions between the oppositely charged polymers hampered photoisomerization and molecular rearrangement, thus leading to a slower writing kinetics for highly charged PAH or PAZO.