148 resultados para sequence capture
Resumo:
Purpose. We quantified the main sequence of spontaneous blinks in normal subjects and Graves' disease patients with upper eyelid retraction using a nonlinear and two linear models, and examined the variability of the main sequence estimated with standard linear regression for 10-minute periods of time. Methods. A total of 20 normal subjects and 12 patients had their spontaneous blinking measured with the magnetic search coil technique when watching a video during one hour. The main sequence was estimated with a power-law function, and with standard and trough the origin linear regressions. Repeated measurements ANOVA was used to test the mean sequence stability of 10-minute bins measured with standard linear regression. Results. In 95% of the sample the correlation coefficients of the main sequence ranged from 0.60 to 0.94. Homoscedasticity of the peak velocity was not verified in 20% of the subjects and 25% of the patients. The power-law function provided the best main sequence fitting for subjects and patients. The mean sequence of 10-minute bins measured with standard linear regression did not differ from the one-hour period value. For the entire period of observation and the slope obtained by standard linear regression, the main sequence of the patients was reduced significantly compared to the normal subjects. Conclusions. Standard linear regression is a valid and stable approximation for estimating the main sequence of spontaneous blinking. However, the basic assumptions of the linear regression model should be examined on an individual basis. The maximum velocity of large blinks is slower in Graves' disease patients than in normal subjects. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Panfacial fractures usually refer to simultaneous facial fractures, which affect the upper, middle, and lower thirds of the face. The management of panfacial fracture is complex because of the lack of reliable landmarks. Literature has shown many approaches for management of panfacial fractures. Every segment of bone has a precise function in the repair. Therefore, the bottom-up and outside-in sequence is the most widely used approach in the management of panfacial fractures. These facial fractures present remarkable challenges for both experienced and inexperienced surgeons. This article aimed to report a case of a panfacial fracture (mandibular condylar and symphysis fractures associated with an atypical Le Fort III fracture) in a 48-year-old man. The patient was successfully treated using bottom-up and outside-in sequence by accessing all facial injuries. Postoperatively, radiograph examination revealed good reduction and fixation of titanium plates, and physical examination revealed good functional and esthetic outcomes. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Land cover change in the Neotropics represents one of the major drivers of global environmental change. Several models have been proposed to explore future trajectories of land use and cover change, particularly in the Amazon. Despite the remarkable development of these tools, model results are still surrounded by uncertainties. None of the model projections available in the literature plausibly captured the overall trajectory of land use and cover change that has been observed in the Amazon over the last decade. In this context, this study aims to review and analyze the general structure of the land use models that have most recently been used to explore land use change in the Amazon, seeking to investigate methodological factors that could explain the divergence between the observed and projected rates, paying special attention to the land demand calculations. Based on this review, the primary limitations inherent to this type of model and the extent to which these limitations can affect the consistency of the projections will also be analyzed. Finally, we discuss potential drivers that could have influenced the recent dynamic of the land use system in the Amazon and produced the unforeseen land cover change trajectory observed in this period. In a complementary way, the primary challenges of the new generation of land use models for the Amazon are synthesized. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Far from the continental margin, drainage basins in Central Amazonia should be in topographic steady state; but they are not. Abandoned remnant fluvial valleys up to hundreds of square kilometers in size are observed throughout Amazonia, and are evidence of significant landscape reorganization. While major Late Miocene drainage shifts occurred due to initiation of the transcontinental Amazon River, local landscape change has remained active until today. Driven either by dynamic topography, tectonism, and/or climatic fluctuations, drainage captures in Amazonia provide a natural experiment for assessing the geomorphic response of low-slope basins to sudden, capture related base-level falls. This paper evaluates the timing of geomorphic change by examining a drainage capture event across the Baependi fault scarp involving the Cuieiras and TarumA-Mirim River basins northwest of the city of Manaus in Brazil. A system of capture-related knickpoints was generated by base-level fall following drainage capture; through numerical modeling of their initiation and propagation, the capture event is inferred to have occurred between the middle and late Pleistocene, consistent with other studies of landscape change in surrounding areas. In low-slope settings like the Amazon River basin, base-level fall can increase erosion rates by more than an order of magnitude, and moderate to large river basins can respond to episodes of base-level fall over timescales of tens to hundreds of thousands of years. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)