182 resultados para pulp zone
Resumo:
Objectives: Evaluate the cytotoxic effect of the three dental adhesive systems. Methods: The immortalized mouse odontoblast cell line (MDPC-23) was plated (30,000 cell/cm 2) in 24 well dishes, allowed to grow for 72 h, and counted under inverted light microscopy. Uncured fresh adhesives were added to culture medium to simulate effects of unset adhesive. Three adhesives systems were applied for 120 min to cells in six wells for each group: Group 1) Single Bond (3M), Group 2) Prime & Bond 2.1 (Dentsply), and Group 3) Syntac Sprint (Vivadent). In the control group, PBS was added to fresh medium. The cell number was counted again and the cell morphology was assessed under SEM. In addition, the adhesive systems were applied to circles of filter paper, light-cured for 20 s, and placed in the bottom of 24 wells (six wells for each experimental materials and control group). MDPC-23 cells were plated (30,000 cell/cm 2) in the wells and allowed to incubate for 72 h. The zone of inhibition around the filter papers was measured under inverted light microscopy; cell morphology was evaluated under SEM; and the MTT assay was performed for mitochondrial respiration. Results: The fresh adhesives exhibited more toxic (cytopathic effects) to MDPC-23 cells than polymerized adhesives on filter papers, and as compared to the control group. The cytopathic effect of the adhesive systems occurred in the inhibition zone around the filter papers, which was confirmed by the MTT assay and statistical analysis (ANOVA) combined with Fisher's PLSD test. In the control group, MDPC-23 cells were dense on the plastic substrate and were in contact with the filter paper. In the experimental groups, when acid in the adhesive systems was removed by changing the culture medium, or when the adhesives were light-cured, some cells grew in the wells in spite of the persistent cytotoxic effect. Significance: All dentin adhesive systems were cytotoxic odontoblast-like cells. Both acidity and non-acidic components of these systems were responsible for the high cytopathic effect of those dental materials. © 1999 Academy of Dental Materials. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Moisture equilibrium data of persimmon skin and pulp were determined using the static gravimetric method. Adsorption and desorption isotherms were obtained in the range of 20-70°C, to water activities (a w) from 0.02 to 0.85. The application of the GAB model to the experimental results, using direct nonlinear regression analysis, provided a good agreement between experimental and calculated values. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausius-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of ΔH versus ΔS for skin and pulp provided the isokinetic temperatures, indicating an enthalpy controlled sorption process. © 2000 Elsevier Science B.V.
Resumo:
Considering several reports about the similarity between the chemical compositions of the mineral trioxide aggregate (MTA) and Portland cement (PC), the subject of this investigation was to analyze the behavior of dog dental pulp after pulpotomy and direct pulp protection with these materials. After pulpotomy, the pulp stumps of 26 roots of dog teeth were protected with MTA or PC. Sixty days after treatment, the animal was sacrificed and the specimens removed and prepared for histomorphological analysis. There was a complete tubular hard tissue bridge in almost all specimens. In conclusion, MTA and PC show similar comparative results when used in direct pulp protection after pulpotomy.
Resumo:
The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.
Resumo:
Aim: To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures. Methodology: Bovine lateral incisors were sectioned 3 mm apical to the cemento-enamel junction and the coronal pulpal tissue was removed. Teeth were divided into six groups (n = 10): G1, G2 and G3 were not submitted to any restorative procedure, while G4, G5 and G6 were submitted to Class V preparations and restored with composite resin. Acetate buffer was placed in the pulp chamber and treatment agents were applied for 60 min at 37°C as follows: G1 and G4, immersion into distilled water; G2 and G5, 10% carbamide peroxide (CP) exposure; G3 and G6, 35% CP bleaching. The buffer solution was removed and transferred to a glass tube where leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined spectrophotometrically at 596 nm. A standard curve made with known amounts of hydrogen peroxide was used to convert the optical density values of the coloured samples into microgram equivalents of hydrogen peroxide. Data were submitted to ANOVA and Tukey's test (5%). Results: Amounts of hydrogen peroxide found in the pulp chamber of G2 and G5 specimens (0.1833 ± 0.2003 μg) were significantly lower (P = 0.001) when compared to G3 and G6 specimens (0.4604 ± 0.3981 μg). Restored teeth held significantly higher (P = 0.001) hydrogen peroxide concentrations in the pulp chamber than intact teeth. Conclusion: Higher concentrations of the bleaching agent produced higher levels of hydrogen peroxide in the pulp chamber, especially in restored teeth.
Resumo:
Longitudinal changes in composition, abundance, and distribution of copepods were studied at the transition zone of Paranapanema River-Jurumirim Reservoir (SP, Brazil). The interchange of biotic material between marginal lakes and the river system was also examined. Water samples were obtained from 6 stations along a stretch of 13 km of the Paranapanema River, from an upstream reach with high water velocity up to the river mouth into Jurumirim Reservoir. Two other sites in lateral lakes were also sampled. Nine copepod taxa were identified: 3 calanoids (Argyrodiaptomus furcatus Sars, Notodiaptomus iheringi Wright, and N. conifer Sars) and 6 cyclopoids (Eucyclops Claus, Microcyclops Claus, Mesocyclops longisetus Thiébaud, Thermocyclops decipiens Fischer, T. minutus Lowndes, and Paracyclops Claus). Harpacticoids were also collected. Calanoid and cyclopoid nauplii and copepodids, and harpacticoids were the most abundant organisms. In general, there was a longitudinal decrease in copepod abundance, whereas an increase was detected near the lakes. The abundance of most copepods was inversely correlated with current velocity and suspended solids. Higher abundance was observed in the river main course during the rainy season, during which there is a higher connectivity between the lakes and the main river. This promotes exportation of biologic material from marginal lakes to the river system, a biotic exchange reflecting the importance of marginal lakes to the river community structure.
Resumo:
Two extracellular xylanases produced by the thermotolerant fungus Aspergillus caespitosus grown in sugar cane bagasse were purified and characterized. Estimated molecular masses were 26.3 and 27 kDa (xyl I); 7.7 and 17.7 kDa (xyl II) for gel filtration and SDS-PAGE, respectively. Optimal temperature for both xylanases was 50-55°C. Optimal pH was 6.5-7.0 for xyl I, and 5.5-6.5 for xyl II. The thermostability (T half) at 55°C was 27.3 min (xyl I) and >90 min (xyl II). Xylanase activity was inhibited by several ions. β-mercaptoethanol activated 59 and 102% xyl I and xyl II activities, respectively. These enzymes preferentially hydrolyzed birchwood xylan, and the K m and V max values were 2.5 mg/ml and 1679 U/mg protein (xyl I), and 3.9 mg/ml and 113 U/mg protein (xyl II). The action of both xylanases mainly that of xyl II, on kraft pulp reduced kappa number and increased pulp viscosity. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
The analysis of interactions between lineages at varying levels of genetic divergence can provide insights into the process of speciation through the accumulation of incompatible mutations. Ring species, and especially the Ensatina eschscholtzii system exemplify this approach. The plethodontid salamanders E. eschscholtzii xanthoptica and E. eschscholtzii platensis hybridize in the central Sierran foothills of California. We compared the genetic structure across two transects (southern and northern Calaveras Co.), one of which was resampled over 20 years, and examined diagnostic molecular markers (eight allozyme loci and mitochondrial DNA) and a diagnostic quantitative trait (color pattern). Key results across all studies were: (1) cline centers for all markers were coincident and the zones were narrow, with width estimates of 730 m to 2000 m; (2) cline centers at the northern Calaveras transect were coincident between 1981 and 2001, demonstrating repeatability over five generations; (3) there were very few if any putative F1s, but a relatively high number of backcrossed individuals in the central portion of transects: and (4) we found substantial linkage disequilibrium in all three studies and strong heterozygote deficit both in northern Calaveras, in 2001, and southern Calaveras. Both linkage disequilibrium and heterozygote deficit showed maximum values near the center of the zones. Using estimates of cline width and dispersal, we infer strong selection against hybrids. This is sufficient to promote accumulation of differences at loci that are neutral or under divergent selection, but would still allow for introgression of adaptive alleles. The evidence for strong but incomplete isolation across this centrally located contact is consistent with theory suggesting a gradual increase in postzygotic incompatibility between allopatric populations subject to divergent selection and reinforces the value of Ensatina as a system for the study of divergence and speciation at multiple stages. © 2005 The Society for the Study of Evolution. All rights reserved.
Resumo:
Purpose: The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. Materials and Methods: Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with × 1,000 magnification. Results: The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p ≤ .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration. ©2005 BC Decker Inc.
Resumo:
The present study aimed to compare the attractiveness of industrial citrus pulp with the handmade orange albedo to the workers of Atta sexdens rubropilosa. For this, filter paper fragments were impregnated with organic extracts obtained through chemical extraction and sequential fractioning with hexane and dichloromethane and offered to different field nests. It was verified that the industrial citrus pulp extract is as good as the handmade orange albedo extract. This preference is discussed keeping in mind the chemical, behavioral and nutritional factors.
Resumo:
Differential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.
Resumo:
Objective: To evaluate the response of human pulps capped with a calcium hydroxide [Ca(OH)2] cement after bleeding control with 2 hemostatic agents. Method and Materials: Pulps were exposed on the occlusal floor, and the bleeding was controlled either with saline solution (SS) or 2.5% sodium hypochlorite (NaOCI) (SH). After that, the pulp was capped with Ca(OH) 2 cement and restored with resin composite. After 30 (groups SS30 and SH30) and 60 (groups SS60 and SH60) days, the teeth were extracted and processed with hematoxylin-eosin and categorized in a histologic score system. The data were subjected to Kruskal-Wallis and Mann-Whitney tests (α = .05). Results: Regarding dentin bridge formation, an inferior response of SH60 group was observed when compared to SS60 (P < .05). The response of the SH30 group generally was similar to that of the groups treated with saline solution. However, after 60 days, 2.5% NaOCl showed a trend toward having an inferior response. Conclusion: Using saline solution as a hemostatic agent before pulp capping with Ca(OH)2 resulted in a significantly better histomorphologic response than using 2.5% NaOCl as a hemostatic agent before capping with Ca(OH)2.
Resumo:
This study sought to assess the pulp chamber temperature in different groups of human teeth that had been bleached using hydrogen peroxide gel activated with halogen lamps or hybrid LED/laser appliances. Four groups of ten teeth (maxillary central incisors, mandibular incisors, mandibular canines, and maxillary canines) were used. A digital thermometer with a K-type thermocouple was placed inside pulp chambers that had been filled with thermal paste. A 35% hydrogen peroxide-based red bleaching gel was applied to all teeth and photocured for a total of three minutes and 20 seconds (five activations of 40 seconds each), using light from an LED/laser device and a halogen lamp. The temperatures were gauged every 40 seconds and the data were analyzed by three-way ANOVA, followed by Tukey's test. Regardless of the light source, statistically significant differences were observed between the groups of teeth. The mean temperature values (±SD) were highest for maxillary central incisors and lowest for mandibular canines. The halogen lamp appliance produced more pulp chamber heating than the LED/laser appliance. The increase in irradiation time led to a significant increase in temperature.
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH) 2 powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH) 2 powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (α=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item Inflammation and General State of the Pulp (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item Other Pulpal Findings, MTA and Ca(OH) 2 showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH) 2 powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH) 2 powder or MTA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate. © Operative Dentistry, 2008.
Resumo:
Aim: The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Methodology: Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (α = 0.05). Results: In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Conclusions: Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth. © 2009 International Endodontic Journal.