122 resultados para p24 Ag


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work consists of preparation and characterization of glasses containing transition noble metals and the study of optical properties of such materials. The glasses were prepared by quenching of the glass melt followed by heat treatment and polishing of the monoliths. The structural characterization of glasses was made using differential thermal analysis, X-ray, Raman and infrared spectroscopies, while the optical properties were studied by UV-Vis and M-Lines spectroscopies. Preliminary results have shown that the color of the glasses is dependent on both concentration of silver and the melting temperature of the melt. Controlled heat treatments have been used to induce the crystallization of Ag nanoparticles within the glass. The study of crystallization was accompanied by electron microscopy and UV-Vis spectroscopy. Data from electron diffraction, as well as chemical analysis, EDX, were obtained using a transmission electron microscope. EDX data have shown that the atomic percentage of Ag is higher on the nanoparticle. X-ray diffraction was used in order to characterize the composition of the crystals and cubic AgCl was identified as the main crystallized nanophase obtained after annealing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AgSIE was used for the direct analysis of folic acid (FA), with a detection limit and lower level of quantitation of 6.8 x10-10 mol L-1 and 2.3 x 10 8 mol L-1. The analysis in fresh and processed fruits was done without any sample pretreatment. In strawberry and acerola juices, FA concentration level values were below the method detection limit. FA was detectable in peach (77.7 0.4 mg L-1 and 64.4 0.5 mgL-1), Persian lime (45.4 0.7 mg L-1), pineapple Hawaii (66.2 0.4 mgL-1), pear pineapple (35.3 0.6 mgL-1), cashew (54.4 0.5 mgL-1) , passion fruit (73.2 0.3 mgL-1), and apple (84.4 0.5 mg L-1 ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to evaluate the corrosion resistance of AuPdAgIn alloy, submitted to laser beam welding, in 0.9% NaCl solution, using electrochemical techniques. Measures of the open circuit potential (OCP) versus time were applied to electrochemical experiments, as well as potentiodynamic direct scanning (PDS) and electrochemical impedance spectroscopy (EIS) on AuPdAgIn alloy, submitted to laser beam welding in 0.9% NaCl solution. Some differences observed in the microstructure can explain the results obtained for corrosion potential, Ecorr, and corrosion resistance, Rp. EIS spectra have been characterized by distorted capacitive components, presenting linear impedance at low frequencies, including a non-uniform diffusion. The area of the laser weld presented corrosion potential slightly superior when compared to the one of the base metal. The impedance results suggest the best resistant corrosion behavior for laser weld than base metal region. This welding process is a promising alternative to dental prostheses casting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology, the science of minuscule, has developed products which are able t o manipulate atoms and molecules that could be applied in the sterilization process of dental instruments. Objetives: The objective of the present study was to evaluate the self-cleaning action of TiO2 and Ag nanoparticles coating on dental instruments by the photocataliys process under UV and visible light irradiation. Material and method: Microbiologic tests were done using dental cement spatulas coated with TiO2 and Ag nanoparticles (one or three layers), and contaminated with 10 mcrl of Pseudomonas aeruginosa and Enterococcus faecalis, respectively. After contamination, they were exposed to ultraviolet light and visible light for 120 minutes. Next, they were transferred to and stored in test tubes with BHI (Brain Heart Infusion) and incubated in 35 to 37 °C. Checking times for bacterial growth and for control and retrieval tests were done at: 24, 48, 72 and 96 hours. Result: The Pseudomonas aeruginosa was inactive after 120 minutes of ultraviolet light irradiation, thus confirming the heterogeneous photocatalytic activity of TiO2 and Ag. The Pseudomonas aeruginosa was not inactivated under visible light irradiation and the Enterococcus faecalis was not inactivated under UV and visible light irradiation of the dental cement spatulas coated with TiO2 and Ag nanoparticles in the readings to 96 hours, showing bacterial growth. Conclusion: There were no influence of one or three layers of TiO2 and Ag nanoparticles coating of the spatulas in the results. The heterogeneous photocatalysis activity of TiO2 and Ag under UV light irradiation was confirmed for Pseudomonas aeruginosa but not under visible light. Enterococcus faecalis did not confirmed the photocatalytics activity of TiO2 and Ag under UV light irradiation and visible lights irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of two compounds, calcium silicate and calcium zirconate was tested in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method. The wires were treated in an atmosphere of O-2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. It was found that the addition of calcium silicate or zirconate promoted higher transition temperatures, up to 116 K for BSCCO with 1wt.% CaSiO3. The critical current densities determined by transport and magnetization measurements were improved in comparison with the wires without any addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. Tapes made by the powder in tube (PIT) method have been successfully tested in pilot power plants in many countries but in Brazil. In this paper, 5, 10, and 20-wt% silver powders are introduced to compose the core of the tape along with the Bi:2212 ceramic powder. The results of electrical experiments are compared with those made with no silver addition Ag tapes. The best current density, at 60 K and no applied magnetic field, was found for the 10-wt% silver proportion, doubling the value obtained for the tape with no silver in the core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. In this paper we describe a systematic and comparative study on Ag/BSCCO composite, made by the citrate route, in which the ceramic pellets are sintered in the presence of silver powder using several proportions and having several granulations. It was observed that the introduction of fine (0.5 and 2 μm) silver powder in the proportions of 5 wt. % always implies in a better critical current density compared to the no silver pellet. According to the results, the silver powder in excess of 5 wt.% may not promote best electrical properties, depending on the size of the silver particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of two compounds, calcium silicate and calcium zirconate was tested, in the preparation of Bi: 2212 silver sheathed wires by powder-in-tube method, which were successfully tested previously in processing chips. The wires were treated in an atmosphere of O2/Ar using partial melting method. The characterizations were structural and on their electrical and magnetic properties. As the results, transition temperatures were higher than the expected for this stage, ranged from 105K (BSCCO880) to 116K (+Si883). The critical current densities encountered in transport and magnetization measurements were improved in comparison with the wires without addition.