197 resultados para oxidative
Resumo:
The development of strategies for the protection of oral tissues against the adverse effects of resin monomers is primarily based on the elucidation of underlying molecular mechanisms. The generation of reactive oxygen species beyond the capacity of a balanced redox regulation in cells is probably a cause of cell damage. This study was designed to investigate oxidative DNA damage, the activation of ATM, a reporter of DNA damage, and redox-sensitive signal transduction through mitogen-activated protein kinases (MAPKs) by the monomer triethylene glycol dimethacrylate (TEGDMA). TEGDMA concentrations as high as 3-5 mm decreased THP-1 cell viability after a 24 h and 48 h exposure, and levels of 8-oxoguanine (8-oxoG) increased about 3- to 5-fold. The cells were partially protected from toxicity in the presence of N-acetylcysteine (NAC). TEGDMA also induced a delay in the cell cycle. The number of THP-1 cells increased about 2-fold in G1 phase and 5-fold in G2 phase in cultures treated with 3-5 mm TEGDMA. ATM was activated in THP-1 cells by TEGDMA. Likewise, the amounts of phospho-p38 were increased about 3-fold by 3 mm TEGDMA compared to untreated controls after a 24 h and 48 h exposure period, and phospho-ERK1/2 was induced in a very similar way. The activation of both MAPKs was inhibited by NAC. Our findings suggest that the activation of various signal transduction pathways is related to oxidative stress caused by a resin monomer. Signaling through ATM indicates oxidative DNA damage and the activation of MAPK pathways indicates oxidative stress-induced regulation of cell survival and apoptosis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Studies on conjugated linoleic acid ingestion and its effect on cardiac tissue are necessary for the safe utilization of this compound as supplement for weight loss. Male Wistar 24-rats were divided into four groups (n = 6):(C)given standard chow, water and 0.5 ml saline, twice a week by gavage; (C-CLA)receiving standard chow, water and 0.5 ml of conjugated linoleic acid, twice a week, by gavage; (S)given standard chow, saline by gavage, and 30% sucrose in its drinking water; (S-CLA)receiving standard chow, 30% sucrose in its drinking water and conjugated linoleic acid. After 42 days of treatment S rats had obesity with increased abdominal-circumference, dyslipidemia, oxidative stress and myocardial lower citrate synthase(CS) and higher lactate dehydrogenase(LDH) activities than C. Conjugated linoleic acid had no effects on morphometric parameters in C-CLA, as compared to C, but normalized morphometric parameters comparing S-CLA with S. There was a negative correlation between abdominal adiposity and resting metabolic rate. Conjugated linoleic acid effect, enhancing fasting-VO2/surface area, postprandial-carbohydrate oxidation and serum lipid hydroperoxide resembled to that of the S group. Conjugated linoleic acid induced cardiac oxidative stress in both fed conditions, and triacylglycerol accumulation in S-CLA rats. Conjugated linoleic acid depressed myocardial LDH comparing C-CLA with C, and beta-hydroxyacyl-coenzyme-A dehydrogenase/CS ratio, comparing S-CLA with S. In conclusion, dietary conjugated linoleic acid supplementation for weight loss can have long-term effects on cardiac health. Conjugated linoleic acid, isomers c9, t11 and t10, c12 presented undesirable pro-oxidant effect and induced metabolic changes in cardiac tissue. Nevertheless, despite its effect on abdominal adiposity in sucrose-rich diet condition, conjugated linoleic acid may be disadvantageous because it can lead to oxidative stress and dyslipidemic profile. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Oxidation of research-grade covellite was investigated in respirometric and growth experiments with Thiobacillus ferrooxidans. Covellite was directly oxidized by T. ferrooxidans in respirometric experiments, but the pH of mineral salts medium increased to prohibitively high values because of high sulfide concentrations. In glycine-H 2SO 4 buffered medium the pH remained steady and the oxygen uptake activity of T. ferrooxidans was not inhibited. In cultures growing with covellite as the sole source of energy, the pH increased to about 4. Redox potential increased to 500-600 mV during bacterial oxidation of covellite in the presence and absence of additional Fe 2+, whereas it remained mostly at about 350 mV in abiotic control. Jarosite was a major solid-phase product in T. ferrooxidans cultures. The solubilization of copper from covellite in inoculated flasks was higher than that obtained in control flasks and was not enhanced in the presence of additional Fe 2+.The sample also contained bornite (Cu 5FeS 4) which released iron in solution under all experimental conditions. Accumulation of S 0 was apparent only in inoculated covellite samples. © 1997 Elsevier B.V. All rights reserved.
Resumo:
The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.
Resumo:
Aqueous extracts of the sporophores of eight mushroom species were assessed for their ability to prevent H2O2-induced oxidative damage to cellular DNA using the single-cell gel electrophoresis (Comet) assay. The highest genoprotective effects were obtained with cold (20°C) and hot (100°C) water extracts of Agaricus bisporus and Ganoderma lucidum fruit bodies, respectively. No protective effects were observed with Mushroom Derived Preparations (MDPs) from Flammulina velutipes, Auricularia auricula, Hypsizygus marmoreus, Lentinula edodes, Pleurotus sajor-caju, and Volvariella volvacea. These findings indicate that some edible mushrooms represent a valuable source of biologically active compounds with potential for protecting cellular DNA from oxidative damage. © 2002 Wiley-Liss, Inc.
Resumo:
A cDNA clone (designated ZmPUMP) encoding an uncoupling protein (UCP) from maize (Zea mays) was identified by searching for homologous sequences among the expressed sequence tags of the GenBank database. The ZmPUMP cDNA contains a single open reading frame of 933 nucleotides encoding 310 amino acids. Several features identified the predicted ZmPUMP protein as a member of the mitochondrial UCP subfamily of mitochondrial carriers. Expression studies demonstrated that ZmPUMP is ubiquitously expressed in maize tissues and its transcript level is not altered in early stages of embryo germination. In contrast to known UCP genes, ZmPUMP is not responsive to cold stress. Instead its expression is increased in response to H 2O 2- or menadione-induced oxidative stress. © 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Dietary modification ought to be the first line of strategy in prevention of the development of cardiac disease. The purpose of this study was to investigate whether dietary restriction, dietary-fibre-enriched diet, and their interactions might affect antioxidant capacity and oxidative stress in cardiac tissue. Male Wistar rats (180-200 g; n = 10) were divided into four groups: control ad libitum diet (C), 50% restricted diet (DR), fed with fibre-enriched diet (F), and 50% restricted fibre-enriched diet (DR-F). After 35 days of the treatments, F, DR, and DR-F rats showed low cholesterol, LDL-cholesterol, and triacylglycerol, and high HDL-cholesterol in serum. The DR, DR-F, and F groups had decreased myocardial lipoperoxide and lipid hydroperoxide. The DR-F and F treatments increased superoxide dismutase and glutatione peroxidase (GSH-Px). The DR treatment increased GSH-Px and catalase activities. Dietary fibre beneficial effects were related to metabolic alterations. The F and DR-F groups showed high cardiac glycogen and low lactate dehydrogenase/citrate synthase ratios, indicating diminished anaerobic and elevated aerobic myocardial metabolism in these animals. There was no synergistic effect between dietary restriction and dietary fibre addition, since no differences were observed in markers of oxidative stress in the F and DR-F groups. Dietary fibre supplementation, rather than energy intake and dietary restriction, appears to be the main process retarding oxidative stress in cardiac tissue.
Resumo:
Protein malnutrition leads to functional impairment in several organs, which is not fully restored with nutritional recovery. Little is known about the role of oxidative stress in the genesis of these alterations. This study was designed to assess the sensitivity of blood oxidative stress biomarkers to a dietary protein restriction. Male Wistar rats were divided into two groups, according to the diet fed from weaning (21 days) to 60 day old: normal protein (17% protein) and low protein (6% protein). Serum protein, albumin, free fatty acid and liver glycogen and lipids were evaluated to assess the nutritional status. Blood glutathione reductase (GR) and catalase (CAT) activities, plasma total sulfhydryl groups concentration (TSG) as well as plasma thiobarbituric acid reactive substances (TBARs) and reactive carbonyl derivatives (RCD) were measured as biomarkers of the antioxidant system and oxidative damage, respectively. The glucose metabolism in soleus muscle was also evaluated as an index of stress severity imposed to muscular mass by protein malnutrition. No difference was observed in muscle glucose metabolism or plasma RCD concentration between both groups. However, our results showed that the low protein group had higher plasma TBARs (62%) concentration and lower TSG (44%) concentration than control group, indicating increased reactive oxygen species production in low protein group. The enhancement of erythrocyte GR (29%) and CAT (28%) activities in this group also suggest an adaptation to the stress generated by the protein deficiency. Taken together, the results presented here show that the biomarkers used were able to reflect the oxidative stress level induced by this specific protein deficient diet.
Resumo:
The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.
Resumo:
Using the post-mitochondrial fraction of rat intestinal mucosa, we have investigated lycopene metabolism. The incubation media was composed of NAD+, KCI, and DTT with or without added lipoxygenase. The addition of lipoxygenase into the incubation significantly increased the production of lycopene metabolites. The enzymatic incubation products of 2H10 lycopene were separated using high-performance liquid chromatography and analyzed by UV/Vis spectrophotometer and atmospheric pressure chemical ionization-mass spectroscopy. We have identified two types of products: cleavage products and oxidation products. The cleavage products are likely: (1) 3-keto-apo-13-lycopenone (C18H24O2 or 6,10,14-trimethyl-12-one-3,5,7,9,13-pentadecapentaen-2-one) with lambdamax = 365 nm and m/z =272 and (2) 3,4-dehydro-5,6-dihydro-15-apo-lycopenal (C20H28O or 3,7,11,15-tetramethyl-2,4,6,8,12,14-hexadecahexaen-l-al) with lambdamax= 380 nm and m/z = 284. The oxidative metabolites are likely: (3) 2-ene-5,8-lycopenal-furanoxide (C37H50O) with lambdamax = 415 nm, 435 nm, and 470 nm, and m/z = 510; (4) lycopene-5, 6, 5', 6'-diepoxide (C40H56O2) with lambdamax = 415 nm, 440 nm, and 470 nm, and m/z =568; (5) lycopene-5,8-furanoxide isomer (I) (C40H56O2) with lambdamax = 410 nm, 440 nm, and 470 nm, and m/z = 552; (6) lycopene-5,8-epoxide isomer (II) (C40H56O) with lambdamax = 410, 440, 470 nm, and m/z = 552; and (7) 3-keto-lycopene-5',8'-furanoxide (C40H54O2) with lambdamax = 400 nm, 420 nm, and 450 nm, and m/z = 566. These results demonstrate that both central and excentric cleavage of lycopene occurs in the rat intestinal mucosa in the presence of soy lipoxygenase.