285 resultados para neighboring group effect
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This in situ/ex vivo study assessed the effect of titanium tetrafluoride (TiF4) on permanent human enamel subjected to erosion.Design: Ten volunteers took part in this study performed in two phases. In the first phase (ERO), they wore acrylic palatal appliances containing two enamel blocks, divided into two rows: TiF4 (F) and no-TiF4 (no-F). During the 1st day, the formation of a salivary pellicle was allowed. In the 2nd day, the TiF4 solution was applied on one row (ERO + F), whereas on the other row no treatment was performed (ERO + no-F). From 3rd until 7th day, the blocks were subjected to erosion, 4x per day. In the 2nd phase (no-ERO), the volunteers wore acrylic palatal appliances containing one enamel block, during 2 days, to assess the effect of TiF4 only (no-ERO + F). Enamel alterations were determined using profilometry (wear), microhardness (%SMHC) tests, scanning electron microscope and microprobe analysis. The %SMHC and wear were tested using ANOVA and Tukey's post hoc tests (p < 0.05).Results: The mean of %SMHC and wear ( mu m) values ( +/- S.D.) were, respectively: ERO + F -73.32 +/- 5.16(A)/2.40 +/- 0.60(a); ERO + no-F -83.49 +/- 4.59B/1.17 +/- 0.48(b) and no-ERO + F -67.92 +/- 6.16(A)/0.21:E 0.09(c). In microscope analysis, the no-F group showed enamel with honeycomb appearance. For F groups, it was observed a surface coating with microcracks. The microprobe analysis revealed the presence of the following elements (%) in groups ERO + F, ERO + no-F and no-ERO + F, respectively: Ca (69.9, 72.5, 66.25); P (25.9, 26.5, 26.06); Ti (3.0, 0, 5.93).Conclusions: The TiF4 was unable to reduce dental erosion. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Low-level laser therapy (LLLT), also referred to as therapeutic laser, has been recommended for a wide array of clinical procedures, among which the treatment of dentinal hypersensitivity. However, the mechanism that guides this process remains unknown. Therefore, the objective of this study was to evaluate in vitro the effects of LLL irradiation on cell metabolism (MTT assay), alkaline phosphatase (ALP) expression and total protein synthesis. The expression of genes that encode for collagen type-1 (Col-1) and fibronectin (FN) was analyzed by RT-PCR. For such purposes, oclontoblast-like cell line (MDPC-23) was previously cultured in Petri dishes (15000 cells/cm(2)) and submitted to stress conditions during 12 h. Thereafter, 6 applications with a monochromatic near infrared radiation (GaAlAs) set at predetermined parameters were performed at 12-h intervals. Non-irradiated cells served as a control group. Neither the MTT values nor the total protein levels of the irradiated group differed significantly from those of the control group (Mann-Whitney test; p > 0.05). on the other hand, the irradiated cells showed a decrease in ALP activity (Mann-Whitney test; p < 0.05). RT-PCR results demonstrated a trend to a specific reduction in gene expression after cell irradiation, though not significant statistically (Mann-Whitney test; p > 0.05). It may be concluded that, under the tested conditions, the LLLT parameters used in the present study did not influence cell metabolism, but reduced slightly the expression of some specific proteins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: the administration of cyclosporin A has been associated with significant bone loss and increased bone remodeling. The present investigation was designed to evaluate the effects of cyclosporin A on alveolar bone of rats subjected to experimental periodontitis, using serum, stereometric and radiographic analysis.Methods: Twenty-four rats were divided into one of the following groups with six animals each: group I, control rats; group II, in which the animals received a cotton ligature around the lower first molars; group III, in which the rats received a cotton ligature around the lower first molars and were treated with 10 mg/(kg body weight day) of cyclosporin A; group IV, in which the rats were treated with 10 mg/(kg body weight day) of cyclosporin A. At the end of experimental period, at 30 days, animals were killed and the serum calcium and alkaline phosphatase levels were measured in all groups. The distance from the alveolar bone crest to the cemento-enamel junction was measured radiographically for each mesial surface of the lower first molars of each rat. After histological processing, the stereological parameters: volume densities of multinucleated osteoclasts (V-o), alveolar bone (V-b), marrow (V-m), and relation of eroded surface/bone surface (Es/Bs) were assessed at the mesial region of the alveolar bone.Results: Significant decreases in serum calcium were observed in those groups that received cyclosporin A therapy. No significant changes in serum alkaline phosphatase were observed. The therapy with cyclosporin A combined with the ligature placement decreased the V-b and increased the V-o, V-m and Es/Bs at the mesial surface of lower first molars. on the other hand, the radiographic data showed that cyclosporin A therapy diminished the alveolar bone loss at the mesial surface of the lower first molars.Conclusions: Therefore, within the limits of this study, we suggest that cyclosporin A at immunosuppressive levels can bring about an imbalance in the alveolar bone homeostasis in rats. However, in the presence of inflammatory stimulation, the inhibition of the immune system by cyclosporin A may decrease the initial periodontal breakdown.
Resumo:
Objectives: the aim of this study was to evaluate in vitro, by scanning electron microscopy (SEM), the adhesion of blood components on root surfaces irradiated with Er:YAG (2.94 mu m) and GaAlAs Diode (808 nm) lasers and the effects on the morphology of irradiated root surfaces.Methods: One hundred samples of human teeth were obtained. They were previously planed and scaled with manual instruments and divided into five groups of 20 samples each: G1 (control group) - absence of treatment; G2 - Er:YAG laser (7.6 J/cm(2)); G3 - Er:YAG laser (12.9 J/cm(2)); G4 - Diode laser (90 J/cm(2)) and G5 - Diode laser (108 J/cm(2)). After these treatments, 10 samples of each group received a blood tissue but the remaining 10 did not. After laboratory treatments, the samples were obtained by SEM, the photomicrographs were analysed by the score of adhesion of blood components and the results were statistically analysed (Kruskall-Wallis and Mann-Whitney test).Results: In relation to the adhesion of blood components, the study showed no significant differences between the control group and the groups treated with Er:YAG laser (p = 0.9633 and 0.6229). Diode laser radiation was less effective than control group and Er:YAG laser radiation (p < 0.01).Conclusion: None of the proposed treatments increased the adhesion of blood components in a significant way when compared to the control group. Although the Er:YAG laser did not interfere in the adhesion of blood components, it caused more changes on the root surface, whereas the Diode laser inhibited the adhesion.
Resumo:
Background: the aim of the present study was to compare the effects of Er:YAG and diode laser treatments of the root surface on intrapulpal temperature after scaling and root planing with hand instruments.Methods: Fifteen extracted single-rooted teeth were scaled and root planed with hand instruments. The teeth were divided into 3 groups of 5 each and irradiated on their buccal and lingual surfaces: group A: Er:YAG laser, 2.94 mum/100 mJ/10 Hz/ 30 seconds; group B: diode laser, 810 nm/1.0 W/0.05 ms/30 seconds; group C: diode laser, 810 nm/1.4 W/0.05 ms/30 seconds. The temperature was monitored by means of a type T thermocouple (copper-constantan) positioned in the pulp chamber to assess pulpal temperature during and before irradiation. Afterwards, the specimens were longitudinally sectioned, and the buccal and lingual surfaces of each root were analyzed by scanning electron microscopy.Results: In the Er:YAG laser group, the thermal analysis revealed an average temperature of -2.2 +/- 1.5degreesC, while in the diode laser groups, temperatures were 1.6 +/- 0.8degreesC at 1.0 W and 3.3 +/- 1.0degreesC at 1.4 W. Electronic micrographs revealed that there were no significant morphological changes, such as charring, melting, or fusion, in any group, although the specimens were found to be more irregular in the Er:YAG laser group.Conclusions: the application of Er:YAG and diode lasers at the utilized parameters did not induce high pulpal temperatures. Root surface irregularities were more pronounced after irradiation with an Er:YAG laser than with a diode laser.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 mu m) or Er:YAG (2.94 mu m) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, alpha = 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 x G2: p = 0.002; G3 x G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.