301 resultados para indirect and composite estimators
Resumo:
Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required. - See more at: https://www.dentalaegis.com/cced/2011/04/smile-restoration-through-use-of-enamel-microbrasion-associated-with-tooth-bleaching#sthash.N6jz2Bwk.dpuf
Resumo:
Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required.
Resumo:
The aim of this study was to evaluate the biological properties and biocompatibility of bovine non-demineralized lyophilized and composite bones implanted in tibiae bone cavities and at the subcutaneous level. Twenty-four rats were used and sacrificed 15 and 45 days later. At the subcutaneous level, after 15 days an inflammatory reaction was seen around biomaterial particles with the presence of giant cells and at 45 days fibrous connective tissue had also developed. No signs of ectopic bone formation were observed at tibiae regions; more bone neoformation was observed at the control group (15 days) with 42.8% of the outer cortex layer against 22.6% at Orthogen and 25% at GenMix groups. At 45 days, correspondent values for bone neoformation were 62.5% at control, 26% at Orthogen, and 35% at GenMix groups, respectively. It can be concluded that both materials tested were biocompatible aiming to bone neoformation by their osteoconductive properties with no ectopic formation sites observed.
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.
Resumo:
There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH.
Resumo:
Caries of primary incisors is a common problem in paediatric dentistry in some countries. The restoration of primary incisors which have been severely damaged by early childhood caries or trauma is also a difficult challenge for clinicians. This case report describes an indirect technique for the restoration of primary anterior teeth using composite resin reinforced with a fibreglass post. Over a one-year period, the crowns have demonstrated good retention and aesthetic results. The restorations were provided in two short chair-side sections, with satisfactory patient cooperation. © 2005 BSPD and IAPD.
Resumo:
This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC) activated solely by chemical reaction (control group) or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram) or composite (Artglass) disc. Light curing was carried out using conventional halogen light (XL2500) for 40 s (QTH); light emitting diodes (Ultrablue Is) for 40 s (LED); and Xenon plasma arc (Apollo 95E) for 3 s (PAC). Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height) was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C), the samples (n = 5) were sectioned for hardness (KHN) measurements, taken in a microhardness tester (50 gF load 15 s). The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05). The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
This study evaluated the Knoop hardness and polymerization depth of a dual-cured resin cement, light-activated at different distances through different thicknesses of composite resin. One bovine incisor was embedded in resin and its buccal surface was flattened. Dentin was covered with PVC film where a mold (0.8-mm-thick and 5 mm diameter) was filled with cement and covered with another PVC film. Light curing (40 s) was carried out through resin discs (2, 3, 4 or 5 mm) with a halogen light positioned 0, 1, 2 or 3 mm from the resin surface. After storage, specimens were sectioned for hardness measurements (top, center, and bottom). Data were subjected to split-plot ANOVA and Tukey's test (α=0.05). The increase in resin disc thickness decreased cement hardness. The increase in the distance of the light curing tip decreased hardness at the top region. Specimens showed the lowest hardness values at the bottom, and the highest at the center. Resin cement hardness was influenced by the thickness of the indirect restoration and by the distance between the light-curing unit tip and the resin cement surface.
Resumo:
Objective. To evaluate the degree of conversion (DC), flexural strength (FS) and Knoop microhardness (KHN) of direct and indirect composite resins polymerized with different curing systems. Materials and methods. Specimens of direct (Z250, 3M/Espe) and indirect (Sinfony, 3M/Espe) restorative materials were made and polymerized using two light curing units: XL2500 (3M/Espe) and Visio system (3M/Espe). Absorption spectra of both composites were obtained on a FTIR spectrometer in order to calculate the DC. FS was evaluated in a universal testing machine and surface microhardness was performed in a microhardness tester (50gf/15s). DC, FS and KHN data were submitted to two-way ANOVA and Tukey's test (α = 0.05). Results. Z250 showed higher DC, FS and KHN compared with Sinfony when the polymerization was carried out with XL2500 (p < 0.05). However, there is no statistical difference in DC between the materials when Visio was used (p > 0.05). Visio showed higher DC and KHN for Z250 and Sinfony than the values obtained using XL2500 light curing (p < 0.05). For FS, no significant difference between curing units was found (p > 0.05). Conclusion. Even though the Visio system could increase DC and KHN for some direct and indirect composites, compared with the conventional halogen curing unit, a high number of monomers did not undergo conversion during the polymerization. © 2013 Informa Healthcare.