152 resultados para heart muscle relaxation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this investigation was to determine whether changes in myosin heavy chain (MHC) expression and atrophy in rat skeletal muscle are observed during transition from cardiac hypertrophy to chronic heart failure (CHF) induced by aortic stenosis (AS). AS and control animals were studied 12 and 18 weeks after surgery and when overt CHF had developed in AS animals, 28 weeks after the surgery. The following parameters were studied in the soleus muscle: muscle atrophy index (soleus weight/body weight), muscle fibre diameter and frequency and MHC expression. AS animals presented decreases in both MHC1 and type I fibres and increases in both MHC2a and type IIa fibres during late cardiac hypertrophy and CHF. Type IIa fibre atrophy occurred during CHF. In conclusion, our data demonstrate that skeletal muscle phenotype changes occur in both late cardiac hypertrophy and heart failure; this suggests that attention should be given to the fact that skeletal muscle phenotype changes occur prior to overt heart failure symptoms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the potential relationship between excess post-exercise oxygen consumption (EPOC), heart rate recovery (HRR) and their respective time constants (tvo(2) and t(HR)) and body composition and aerobic fitness (VO(2)max) variables after an anaerobic effort. 14 professional cyclists (age = 28.4 +/- 4.8 years, height = 176.0 +/- 6.7 cm, body mass = 74.4 +/- 8.1 kg, VO(2)max = 66.8 +/- 7.6 mL. kg(-1) . min(-1)) were recruited. Each athlete made 3 visits to the laboratory with 24h between each visit. During the first visit, a total and segmental body composition assessment was carried out. During the second, the athletes undertook an incremental test to determine VO(2)max. In the final visit, EPOC (15-min) and HRR were measured after an all-out 30s Wingate test. The results showed that EPOC is positively associated with % body fat (r = 0.64), total body fat (r = 0.73), fat-free mass (r = 0.61) and lower limb fat-free mass (r = 0.55) and negatively associated with HRR (r = - 0.53, p < 0.05 for all). HRR had a significant negative correlation with total body fat and % body fat (r = - 0.62, r = - 0.56 respectively, p < 0.05 for all). These findings indicate that VO(2)max does not influence HRR or EPOC after high-intensity exercise. Even in short-term exercise, the major metabolic disturbance due to higher muscle mass and total muscle mass may increase EPOC. However, body fat impedes HRR and delays recovery of oxygen consumption after effort in highly trained athletes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The literature reports that the eccentric muscular action produces greater force and lower myoelectric activity than the concentric muscular action, while the heart rate (HR) responses are bigger during concentric contraction. Objectives: To investigate the maximum average torque (MAT), surface electromyographic (SEMG) and the heart rate (HR) responses during different types of muscular contraction and angular velocities in older men. Methods: Twelve healthy men (61.7 +/- 1.6years) performed concentric (C) and eccentric (E) isokinetic knee extension-flexion at 60 degrees/s and 120 degrees/s. SEMG activity was recorded from vastus lateralis muscle and normalized by Root Mean Square-RMS (mu V) of maximal isometric knee extension at 60 degrees. HR (beats/min) and was recorded at rest and throughout each contraction. The data were analyzed by the Friedman test for repeated measures with post hoc Dunn's test (p<0.05). Results: The median values of MAT (N.m/kg) was smaller and the RMS (mu V) was larger during concentric contraction (C60 degrees/s=2.80 and 0.99; C120 degrees/s=2.46 and 1.0) than eccentric (E60 degrees/s=3.94 and 0.85; E120 degrees/s=4.08 and 0.89), respectively. The HR variation was similar in the four conditions studied. Conclusion: The magnitude of MAT and RMS responses in older men were dependent of the nature of the muscular action and independent of the angular velocity, whereas HR response was not influenced by these factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To analyze the potential contribution of contractility state and ventricular geometry to the development of heart failure in rats with aortic stenosis.Methods: Rats were divided into three groups: compensated aortic stenosis (AS, n = 11), heart failure AS (n = 12) and control rats (C, n = 13).Results: After 21 weeks, failing AS rats presented higher systolic (C = 36.6 +/- 3.1, AS-78.6 +/- 4.8*, failing AS = 104.6 +/- 7.8*) and diastolic meridian stress (C = 6.9 +/- 0.4, AS = 20.1 +/- 1.1*, failing AS = 43.2 +/- 3.2*(dagger)), hydroxyproline (C = 3.6 +/- 0.7 mg/g, AS = 6.6 +/- 0.6* mg/g, failing AS = 9.2 +/- 1.4*(dagger) mg/g) and cross-sectional area (C = 338 +/- 25 mu m(2), AS = 451 +/- 32* mu m(2), failing AS = 508 +/- 36*(dagger) mu m(2)), in comparison with control and compensated AS animals (*p < 0.05 vs. control, (dagger)p < 0.05 vs. AS). In the isometric contraction study, considering the time from peak tension to 50% relaxation (RT50), the relative variation responses, following post-rest contraction and increase in Ca2+ concentration, were higher in failing AS than compensated AS animals. In contrast, following post-rest contraction, compensated AS group presented higher values of the peak developed tension (DT) than failing AS group. Following beta-adrenergic stimulation, control animals presented higher values of +dT/dt and -dT/dt than AS animals. In addition, failing AS animals presented higher TPT values than compensated AS animals.Conclusion: Myocardial contractile dysfunction contributes to the development of heart failure in rats with aortic stenosis. (c) 2006 Elsevier B.V.. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we assessed the mechanical function of isolated left ventricular papillary muscles from 60 day-old male Wistar-Kyoto rats (WKY) subjected to different periods of food restriction (FR). The food-restricted animals (R) were fed 50% of the amount of diet consumed by the ad Libitum-fed rats (C). The cardiac muscles were studied after 30, 60, and 90 days (R-30, R-60 and R-90) of FR. The effect of FR on myocardial collagen concentration was also evaluated. The parameters from the three control groups that were statistically identical were combined and the control pool group (CP) was formed. The left ventricular weight-to-body weight ratio was lower in the R-30 and higher in the R-60 and R-90 in relation to their control groups. Hydroxyproline concentration was higher only in R-90 compared to CP and R-30. Myocardial mechanical function was the same in the C groups. The comparisons between CP and FR groups showed that: the muscles of R-30 presented increased resting tension and maximum rate of tension decline, and decreased velocity of shortening; the muscles of R-60 and R-90 groups showed a prolongation of the time to peak tension (TPT) and the time to peak shortening (TPS); and R-30 had an increased time from peak tension to 50% relaxation (RT1/2). Increases in TPT, TPS, and RT1/2 in groups R-60 and R-90 were significant in relation to R-30. In conclusion, while FR for 30 days produces disparate effects on myocardial performance, FR for 60 and 90 days prolongs the contraction period. The change of relaxation time in R-90 might be related to the increased myocardial collagen content. (C) 2001 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the influence of myocardial collagen volume fraction (CVF, %) and hydroxyproline concentration (mu g/mg) on rat papillary muscle function. Collagen excess was obtained in 10 rats with unilateral renal ischemia for 5 wk followed by 3-wk treatment with ramipril (20 mg . kg(-1) . day(-1)) (RHTR rats; CVF = 3.83 +/- 0.80, hydroxyproline = 3.79 +/- 0.50). Collagen degradation was induced by double infusion of oxidized glutathione (GSSG rats; CVF 5 2.45 +/- 0.52, hydroxyproline = 2.85 +/- 0.18). Nine untreated rats were used as controls (CFV = 3.04 +/- 0.58, hydroxyproline = 3.21 +/- 0.30). Active stiffness (AS; g . cm(-2) . %L-max(-1)) and myocyte cross-sectional area (MA; mu m(2)) were increased in the GSSG rats compared with controls [AS 5.86 vs. 3.96 (P< 0.05); MA 363 +/- 59 vs. 305 +/- 28 (P< 0.05)]. In GSSG and RHTR groups the passive tension-length curves were shifted downwards, indicating decreased passive stiffness, and upwards, indicating increased passive stiffness, respectively. Decreased collagen content induced by GSSG is related to myocyte hypertrophy, decreased passive stiffness, and increased AS, and increased collagen concentration causes myocardial diastolic dysfunction with no effect on systolic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effect of food restriction (FR) on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR). METHODS: Isolated papillary muscle preparations of the left ventricle (LV) of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY) rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet) for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1) reduction in the body weight and LV weight of SHR and WKY rats; 2) increase in the time to peak shortening and the time to peak developed tension (DT) in the hypertrophied myocardium of the SHR; 3) diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.