167 resultados para gain decay
Resumo:
Additive and nonadditive genetic effects on preweaning weight gain (PWG) of a commercial crossbred population were estimated using different genetic models and estimation methods. The data set consisted of 103,445 records on purebred and crossbred Nelore-Hereford calves raised under pasture conditions on farms located in south, southeast, and middle west Brazilian regions. In addition to breed additive and dominance effects, the models including different epistasis covariables were tested. Models considering joint additive and environment (latitude) by genetic effects interactions were also applied. In a first step, analyses were carried out under animal models. In a second step, preadjusted records were analyzed using ordinary least squares (OLS) and ridge regression (RR). The results reinforced evidence that breed additive and dominance effects are not sufficient to explain the observed variability in preweaning traits of Bos taurus x Bos indicus calves, and that genotype x environment interaction plays an important role in the evaluation of crossbred calves. Data were ill-conditioned to estimate the effects of genotype x environment interactions. Models including these effects presented multicolinearity problems. In this case, RR seemed to be a powerful tool for obtaining more plausible and stable estimates. Estimated prediction error variances and variance inflation factors were drastically reduced, and many effects that were not significant under ordinary least squares became significant under RR. Predictions of PWG based on RR estimates were more acceptable from a biological perspective. In temperate and subtropical regions, calves with intermediate genetic compositions (close to 1/2 Nelore) exhibited greater predicted PWG. In the tropics, predicted PWG increased linearly as genotype got closer to Nelore. ©2006 American Society of Animal Science. All rights reserved.
Resumo:
We present general explicit expressions for a shell-model calculation of the vector hypernuclear parameter in nonmesonic weak decay. We use a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (π, η, K, ρ, ω, K*). In contrast to the approximated formula widely used in the literature, we correctly treat the contribution of transitions originated from single-proton states beyond the s-shell. Exact and simple analytical expressions are obtained for the particular cases of Λ 5He and Λ 12C, within the one-pion-exchange model. Numerical computations of the asymmetry parameter, aΛ, are presented. Our results show a qualitative agreement with other theoretical estimates but also a contradiction with recent experimental determinations. Our simple analytical formulas provide a guide in searching the origin of such discrepancies, and they will be useful for helping to solve the hypernuclear weak decay puzzle.
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.
Resumo:
A fully reconstructed Bc→J/ψπ signal is observed with the D0 detector at the Fermilab Tevatron pp̄ collider using 1.3fb-1 of integrated luminosity. The signal consists of 54±12 candidates with a significance that exceeds 5 standard deviations, and confirms earlier observations of this decay. The measured mass of the Bc meson is 6300±14(stat)±5(syst) MeV/c2. © 2008 The American Physical Society.
Resumo:
To evaluate the effect of selenium on cattle growth in a continuous grazed pasture system. Selenium was added to protein-mineral salt and given to male, around-12-month old, non-castrated Nellore calves. Animals were randomly and equally distributed into 4 groups (15 calves/group) which received supplementation containing 0, 3.6, 5.4 or 6.4 mg selenium/animal/day (groups Gc, G 3.6, G 5.4 and G 6.4, respectively). The animals were weighed on day zero and 120, and the pasture forages were collected at day 0 for chemical analyses. Weight gain was higher in cattle from G 5,4 (45.58%) than in the other groups, and higher in G 3,6 (24.97%) and G 6,4 (22.67%) than in Gc. The supplementation with 5.4 mg selenium/animal/day enhanced weight gain in cattle fed on selenium poor diet (0.04 mg Se/kg dry matter).
Resumo:
We report the results of a search for a narrow resonance decaying into two photons in 1.1fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 20022006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of mhf>100GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(hf→I I ) vs mhf which was not accessible at the CERN Large Electron-Positron Collider. © 2008 The American Physical Society.
Resumo:
Nowadays, one of the most important concerns for many companies is to maintain the operation of their systems without sudden equipment break down. Because of this, new techniques for fault detection and location in mechanical systems subject to dynamic loads have been developed. This paper studies of the influence of the decay rate in the design of state observers using LMI for fault detection in mechanical systems. This influence is analyzed by the performance index proposed by Huh and Stein for the condition of a state observer. An example is presented to illustrate the methodology discussed.
Resumo:
After a short introduction to the nonmesonic weak decay (NMWD) ΛN→nN of Λ-hypernuclei we discuss the long-standing puzzle on the ratio Γn/Γp, and some recent experimental evidences that signalized towards its final solution. Two versions of the Independent-Particle-Shell-Model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account, and (b) IPSM-b, where the highly excited hole states are considered to be quasi-stationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. We evaluate the coincidence spectra in Λ 4He, Λ 5He, Λ 12C, Λ 16O, and Λ 28Si, as a function of the sum of kinetic energies EnN=En+EN for N=n, p. The recent Brookhaven National Laboratory experiment E788 on Λ 4He, is interpreted within the IPSM. We found that the shapes of all the spectra are basically tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange- potential. In spite of the straightforwardness of the approach a good agreement with data is achieved. This might be an indication that the final-state- interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the π+K exchange potential with soft vertex-form-factor cutoffs (Λπ≈0. 7GeV, ΛK≈0.9GeV), is able to account simultaneously for the available experimental data related to Γp and Γn for Λ 4H, and Λ 5He. © 2010 American Institute of Physics.
Resumo:
A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].
Resumo:
We measure the Λb0 lifetime in the fully reconstructed decay Λb0→J/ψΛ0 using 10.4fb -1 of pp̄ collisions collected with the D0 detector at √s=1.96TeV. The lifetime of the topologically similar decay channel B0→J/ψKS0 is also measured. We obtain τ(Λb0)=1.303±0.075(stat)±0.035(syst)ps and τ(B0)=1.508±0.025(stat)±0.043(syst)ps. Using these measurements, we determine the lifetime ratio of τ(Λb0)/τ(B0)=0. 864±0.052(stat)±0.033(syst). © 2012 American Physical Society.
Resumo:
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3fb -1 of integrated luminosity, we search for violation of Lorentz invariance by examining the tt̄ production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the tt̄ production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c Q) μν33 and (c U) μν33 containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero. © 2012 American Physical Society.
Resumo:
The control of post-harvest fungal decay on guava (Psidium guajava L. 'Pedro Sato') stored under low oxygen controlled atmosphere (5 kPa) was compared with increasing concentrations of carbon dioxide in the atmospheres. The combination of high concentrations of carbon dioxide (1, 5, 10, 15 and 20 kPa) with low oxygen (5 kPa) did not result in additional decay control. The low oxygen level (5 kPa) was the main factor for controlling post-harvest fungal development which resulted in a very low percentage of fruits with symptoms of anthracnose and stylar end rot throughout cold storage, regardless of the CO2 concentration. After transfer to ambient conditions, only the atmospheres with 5 kPa O2 (control), 5 kPa O2 + 1 kPa CO2 and 5 kPa O2 + 5 kPa CO2 resulted in reduced incidence of stylar end rot (P<0.05). There was not a significant interaction among CA combinations and storage duration on the percentage and number of typical anthracnose lesions.
Resumo:
Introduction: Elastomeric materials are considered important sources of orthodontic forces. Objective: To assess force degradation over time of four commercially available orthodontic elastomeric chains (Morelli, Ormco, TP and Unitek). Methods: The synthetic elastics were submerged in 37 oC synthetic saliva and stretched by a force of 150 g (15 mm - Morelli and TP; 16mm - Unitek and Ormco). With a dynamometer, the delivered force was evaluated at different intervals: 30 minutes, 7 days, 14 days and 21 days. The results were subjected to ANOVA and Tukey's test. Results: There was a force decay between 19% to 26.67% after 30 minutes, and 36.67% to 57% after 21 days of activation. Conclusions: TP elastomeric chains exhibited the smallest percentage of force decay, with greater stability at all time intervals tested. Meanwhile, the Unitek chains displayed the highest percentage of force degradation, and no statically significant difference was found in force decay between Ormco and Morelli elastomeric chains during the study period.
Resumo:
We investigate the decay Bs0→J/ψK +K - for invariant masses of the K +K - pair in the range 1.35
Resumo:
Simple and coincidence spectra of the NM weak decay of light hypernuclei have been evaluated in a systematic way for the first time. We have only considered 1N induced processes, neglecting entirely the events induced by 2N emission, as well as the effects of the FSIt's. As the theoretical frameworkwe have used the IPSM with three different parametrizations for the transition potential. The comparison with data strongly suggests that the soft π + K exchange model could be a good starting point to describe the dynamics in the NM weak decays of s- and p-shell hypernuclei. © 2012 American Institute of Physics.