166 resultados para exponential decay
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space.
Resumo:
The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID which constitutes a system of two interacting quantum degrees of freedom coupled to the environment. The decay probability is obtained in the exponential approximation for the overdamped case. Close to the critical driving force of the system, the decay of the metastable state is determined by a unique instanton solution describing the symmetric decay of the phases in each of the two Josephson juctions. Upon reducing the external driving force a new regime is reached where the instanton splits. The doubling of the decay channels reduces the decreasing of the decay rate in the quantum regime. A current-temperature phase diagram is constructed based on the Landau theory of phase transitions. Depending on the external parameters the system develops either a first- or a second-order transition to the split-instanton regime. © 1994 The American Physical Society.
Resumo:
We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay rates are verified to agree in both cases. For the sake of simplicity our calculations are performed in a two-dimensional spacetime since our conclusions are not conceptually affected by this. ©1999 The American Physical Society.
Resumo:
We point out that if the Majoron-like scheme is implemented within a 3-3-1 model, there must exist at least three different mass scales for the scalar vacuum expectation values in the model. ©1999 The American Physical Society.
Resumo:
We investigate the weak interaction emission of spin-1/2 fermions from accelerated currents. As particular applications, we analyze the decay of uniformly accelerated protons and neutrons, and the neutrino-antineutrino emission from uniformly accelerated electrons. The possible relevance of our results to astrophysics is also discussed.
Resumo:
A theoretic-oriented strategy was taken to address the weak decay of uniformly accelerated protons. The decay of uniformly accelerated p+'s was analyzed using standard quantum field theory (QFT). It was shown that the FDU effect is essential to reproduce the proper decay rate in the uniformly accelerated frame.
Resumo:
We consider the contributions to the neutrinoless double beta decays in a SU(3)L⊗U(1)N electroweak model. We show that for a range of parameters in the model there are diagrams involving vector-vector-scalar and trilinear scalar couplings which can be potentially as contributing as the light massive Majorana neutrino exchange one. We use these contributions to obtain constraints upon some mass scales of the model, such as the masses of the new charged vector and scalar bosons. We also consider briefly the decay in which, in addition to the two electrons, a Majoron-like boson is emitted. ©2001 The American Physical Society.
Resumo:
We explore regions of parameter space in a simple exponential model of the form V = V0 e-λ(Q/Mp) that are allowed by observational constraints. We find that the level of fine tuning in these models is not different from more sophisticated models of dark energy. We study a transient regime where the parameter λ has to be less than √3 and the fixed point ΩQ = 1 has not been reached. All values of the parameter λ that lead to this transient regime are permitted. We also point out that this model can accelerate the universe today even for λ > √2, leading to a halt of the present acceleration of the universe in the future thus avoiding the horizon problem. We conclude that this model can not be discarded by current observations. © SISSA/ISAS 2002.
Resumo:
Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.
Resumo:
70SiO2 - 30HfO2 planar waveguides, activated by Er3+ concentration ranging from 0.3 to 1 mol%, were prepared by solgel route, using dip-coating deposition on silica glass substrates. The waveguides showed high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 nm or 514.5 nm continuous-wave laser light, the waveguides showed the 4I 13/2→4I15/2 emission band with a bandwidth of 48 nm. The spectral features were found independent both on erbium content and excitation wavelength. The 4I13/2 level decay curves presented a single exponential profile, with a lifetime between 2.9-5.0 ms, depending on the erbium concentration.
Resumo:
We present the results of a search for the flavor-changing neutral current decay Bs 0 → μ+ μ-. using a data set with integrated luminosity of 240 pb-1 of pp̄ collisions at √s = 1.96 TeV collected with the D0 detector in run II of the Fermilab Tevatron collider. We find the upper limit on the branching fraction to be B(Bs 0 → μ+ π-) ≤ 5.0 × 10-7 at the 95% C.L. assuming no contributions from the decay Bd 0 → μ+ μ- in the signal region. This limit is the most stringent upper bound on the branching fraction Bs 0 → μ+ μ- to date. © 2005 The American Physical Society.
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We present general explicit expressions for a shell-model calculation of the vector hypernuclear parameter in nonmesonic weak decay. We use a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (π, η, K, ρ, ω, K*). In contrast to the approximated formula widely used in the literature, we correctly treat the contribution of transitions originated from single-proton states beyond the s-shell. Exact and simple analytical expressions are obtained for the particular cases of Λ 5He and Λ 12C, within the one-pion-exchange model. Numerical computations of the asymmetry parameter, aΛ, are presented. Our results show a qualitative agreement with other theoretical estimates but also a contradiction with recent experimental determinations. Our simple analytical formulas provide a guide in searching the origin of such discrepancies, and they will be useful for helping to solve the hypernuclear weak decay puzzle.
Resumo:
A fully reconstructed Bc→J/ψπ signal is observed with the D0 detector at the Fermilab Tevatron pp̄ collider using 1.3fb-1 of integrated luminosity. The signal consists of 54±12 candidates with a significance that exceeds 5 standard deviations, and confirms earlier observations of this decay. The measured mass of the Bc meson is 6300±14(stat)±5(syst) MeV/c2. © 2008 The American Physical Society.