129 resultados para differential expression genes


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Islet Neogenesis Associated Protein (INGAP) increases pancreatic beta-cell mass and potentiates glucose-induced insulin secretion. Here, we investigated the effects of the pentadecapeptide INGAP-PP in adult cultured rat islets upon the expression of proteins constitutive of the K-ATP(+) channel, Ca2+ handling, and insulin secretion. The islets were cultured in RPMI medium with or without INGAP-PP for four days. Thereafter, gene (RT-PCR) and protein expression (Western blotting) of Foxa2, SUR1 and Kir6.2, cytoplasmic Ca2+ ([Ca2+](i)), static and dynamic insulin secretion, and Rb-86 efflux were measured. INGAP-PP increased the expression levels of Kir6.2, SUR1 and Foxa2 genes, and SUR1 and Foxa2 proteins. INGAP-PP cultured islets released significantly more insulin in response to 40 mM KCl and 100 mu M tolbutamide. INGAP-PP shifted to the left the dose-response curve of insulin secretion to increasing concentrations of glucose (EC50 of 10.0 +/- 0.4 vs. 13.7 +/- 1.5 mM glucose of the controls). It also increased the first phase of insulin secretion elicited by either 22.2 mM glucose or 100 mu M tolbutamide and accelerated the velocity of glucose-induced reduction of Rb-86 efflux in perifused islets. These effects were accompanied by a significant increase in [Ca2+](i) and the maintenance of a considerable degree of [Ca2+](i) oscillations. These results confirm that the enhancing effect of INGAP-PP upon insulin release, elicited by different secretagogues, is due to an improvement of the secretory function in cultured islets. Such improvement is due, at least partly, to an increased K-ATP(+) channel protein expression and/or changing in the kinetic properties of these channels and augmented [Ca2+](i) response. Accordingly, INGAP-PP could potentially be used to maintain the functional integrity of cultured islets and eventually, for the prevention and treatment of diabetes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The C6 rat glioma cell line is responsive to glucocorticoid hormones. C6 variants that are hyper-responsive (ST1) and resistant (P7) to hormone treatment have been derived previously. Glucocorticoid treatment of ST1 cells leads to complete reversion of the transformed phenotype and loss of tumorigenic potential. Production of C type retrovirus particles is also induced by glucocorticoids in ST1 cells. Cloning of the genes regulated by glucocorticoids in this cell system was used here as a strategy to uncover the gene products involved in the transformed-to-normal phenotypic change. Construction of a cDNA library from glucocorticoid-treated ST1 cells and screening by differential hybridization resulted in the isolation of three cellular sequences that code for rat metallothioneins (C27 and C41) and α1-acid glycoprotein (C36). Northern blot analysis revealed that expression of these genes was dramatically induced by hydrocortisone in ST1 but not in P7 cells. Viral genomic RNA was used to isolate and characterize retrovirus-related sequences that could also be responsible for the phenotypic reversion phenomenon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Rust caused by Puccinia psidii Winter has been limiting for the establishment of new Eucalyptus plantations, as well as for resprouting of susceptible genetic materials. Identifying host genes involved in defense responses is important to elucidate resistance mechanisms. Reverse transcription-quantitative PCR is the most common method of mRNA quantitation for gene expression analysis. This method generally employs a reference gene as an internal control to normalize results. A good endogenous control transcript shows minimal variation due to experimental conditions. Findings. We analyzed the expression of 13 genes to identify transcripts with minimal variation in leaves of 60-day-old clonal seedlings of two Eucalyptus clones (rust-resistant and susceptible) subjected to biotic (P. psidii) and abiotic (acibenzolar-S-methyl, ASM) stresses. Conclusions. For tissue samples of clones that did not receive any stimulus, a combination of the eEF2 and EglDH genes was the best control for normalization. When pathogen-inoculated and uninoculated plant samples were compared, eEF2 and UBQ together were more appropriate as normalizers. In ASM-treated and untreated leaves of both clones, transcripts of the CYP and elF4B genes combined were the ones with minimal variation. Finally, when comparing expression in both clones for ASM-treated leaves, P. psidii-inoculated leaves, ASM-treated plus P. psidii-inoculated leaves, and their respective controls, the genes with the most stable expression were EgIDH and UBQ. The chitinase gene, which is highly expressed in studies on plant resistance to phytopathogens, was used to confirm variation in gene expression due to the treatments. © 2010 Laia et al; licensee BioMed Central Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Model of study: Experimental study. Introduction: Recently, stem cell research has generated great interest due to its applicability in regenerative medicine. Bone marrow is considered the most important source of adult stem cells and the establishment of new methods towards gene expression analysis regarding stem cells has become necessary. Thus Differential Display Reverse Transcription Polymerase Chain Reaction (DDRT-PCR) may be an accessible tool to investigate small differences in the gene expression of different stem cells in distinct situations. Aim: In the present study, we investigated the exequibility of DDRT-PCR to identify differences in global gene expression of mice bone marrow cells under two conditions. Methods: First, bone marrow cells were isolated fresh and a part was cultivated during one week without medium replacement. Afterwards, both bone marrow cells (fresh and cultivated) were submitted to gene expression analyses by DDRT-PCR. Results: Initially, it was possible to observe in one week-cultured bone marrow cells, changes in morphology (oval cells to fibroblastic-like cells) and protein profile, which was seen through differences in band distribution in SDS-Page gels. Finally through gene expression analysis, we detected three bands (1300, 1000 and 225 bp) exclusively expressed in the fresh bone marrow group and two bands (400 and 300 bp) expressed specifically in the cultivated bone marrow cell group. Conclusions: In summary, the DDRT-PCR method was proved efficient towards the identification of small differences in gene expression of bone marrow cells in two defined conditions. Thus, we expect that DDRT-PCR can be fast and efficiently designed to analyze differential gene expression in several stem cell types under distinct conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42. days, (F5) 5. days of fasting and 37. days of refeeding, and (F10) 10. days of fasting and 32. days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n = 14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10. days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5. days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes. © 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The polysaccharide β-glucan has biological properties that stimulate the immune system and can prevent chronic pathologies, including cancer. It has been shown to prevent damage to DNA caused by the chemical and physical agents to which humans are exposed. However, the mechanism of β-glucan remains poorly understood. The objective of the present study was to verify the protective effect of β-glucan on the expression of the genes ERCC5 (involved in excision repair of DNA damage), CASP9 (involved in apoptosis), and CYP1A1 (involved in the metabolism of xenobiotics) using real-time polymerase chain reaction and perform metabolic profile measurements on the HepG2 cells. Cells were exposed to only benzo[a]pyrene (B[a]P), β-glucan, or a combination of B[a]P with β-glucan. The results demonstrated that 50 μg/mL β-glucan significantly repressed the expression of the ERCC5 gene when compared with the untreated control cells in these conditions. No change was found in the CASP9 transcript level. However, the CYP1A1 gene expression was also induced by HepG2 cells exposed to B[a]P only or in association with β-glucan, showing its effective protector against damage caused by B[a]P, while HepG2 cells exposed to only β-glucan did not show CYP1A1 modulation. The metabolic profiles showed moderate bioenergetic metabolism with an increase in the metabolites involved in bioenergetic metabolism (alanine, glutamate, creatine and phosphocholine) in cells treated with β-glucan and to a lesser extent treated with B[a]P. Thus, these results demonstrate that the chemopreventive activity of β-glucan may modulate bioenergetic metabolism and gene expression. © 2013 The Author(s).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2. © 2013 Society for Reproduction and Fertility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to determine the effects of dietary energy and recombinant bovine somatotropin (bST) injection to identify genes that might control mammogenesis. Total RNA was extracted from the parenchymal tissue of 32 heifers randomly assigned to one of four treatments: two diets (a standard diet and a high energy, high protein diet), each with or without bST. To perform microarray experiments, RNA samples were pooled (2 animals/pool) before reverse transcription and labeling with Cy3 or Cy5. A 4-node loop design was used to examine the differential gene expression among treatments using a bovine-specific cDNA micro array (National Bovine Functional Genomics Consortium Library, NBFGC) containing 18,263 unique expressed sequence tags (EST). Significance levels of differential gene expression among treatments were assessed using a mixed model approach. Injection of bST altered the expression of 12 % of the genes on NBFGC slide related to tissue development, whereas 6% were altered by diet. Administration of bST increases the expression of genes positively related to cell proliferation and mammary parenchyma to a greater extent than a high energy diet. © 2013 Sociedade Brasileira de Zootecnia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle growth in the pirarucu (Arapaima gigas) is highly interesting to fish farmers because it provides information about how the mechanism in muscle mass increase, characteristic of the species, is regulated. Pirarucu has specific muscle growth that highlights the species's significance and commercial value. Current research evaluates the morphology and the growth-related gene expression in the red and white skeletal muscles of the pirarucu. Muscle samples were collected from the lateral anterior region and frozen in liquid nitrogen. Histological sections were performed and stained by HE for morphological analysis. Red and white muscle samples were used to determine MyoD, myogenin, and myostatin genes expression by Real-time Polymerase Chain Reaction. Although MyoD and myogenin were not statistically different in the two types of muscles, myostatin was significantly higher in the white rather than in the red muscle. Results show the muscle growth characteristics of the species and may be helpful for improving aquaculture management programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)