137 resultados para decomposition of gauge field
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work identifies and analyzes literature about knowledge organization (KO), expressed in scientific journals communication of information science (IS). It performs an exploratory study on the Base de Dados Referencial de Artigos de Periodicos em Ciência da Informacio (BRAPCI, Reference Database of Journal Articles on Information Science) between the years 2000 and 2010. The descriptors relating to "knowledge organization" are used in order to recover and analyze the corresponding articles and to identify descriptors and concepts which integrate the semantic universe related to KO. Through the analysis of content, based on metrical studies, this article gathers and interprets data relating to documents and authors. Through this, it demonstrates the development of this field and its research fronts according to the observed characteristics, as well as noting the transformation indicative in the production of knowledge. The work describes the influences of the Spanish researchers on Brazilian literature in the fields of knowledge and information organization. As a result, it presents the most cited and productive authors, the theoretical currents which support them, and the most significant relationships of the Spanish-Brazilian authors network. Based on the constant key-words analysis in the cited articles, the co-existence of the French conception current and the incipient Spanish influence in Brazil is observed. Through this, it contributes to the comprehension of the thematic range relating to KO, stimulating both criticism and self-criticism, debate and knowledge creation, based on studies that have been developed and institutionalized in academic contexts in Spain and Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T not equal0 for bosonic open strings with a constant gauge field F-ab coupled to the boundary. The construction is done in the framework of ther-mo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the entropy of the Dp-brane at finite temperature.
Resumo:
Two problems relative to the electromagnetic coupling of Duffin-Kemmer-Petiau (DKP) theory are discussed: the presence of an anomalous term in the Hamiltonian form of the theory and the apparent difference between the interaction terms in DKP and Klein-Gordon (KG) Lagrangians. For this, we first discuss the behavior of DKP field and its physical components under gauge transformations. From this analysis, we can show that these problems simply do not exist if one correctly analyses the physical components of DKP field. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider an electric charge, minimally coupled to the Maxwell field, rotating around a Schwarzschild black hole. We investigate how much of the radiation emitted from the swirling charge is absorbed by the black hole and show that most of the photons escape to infinity. For this purpose we use the Gupta-Bleuler quantization of the electromagnetic field in the modified Feynman gauge developed in the context of quantum field theory in Schwarzschild spacetime. We obtain that the two photon polarizations contribute quite differently to the emitted power. In addition, we discuss the accurateness of the results obtained in a full general relativistic approach in comparison with the ones obtained when the electric charge is assumed to be orbiting a massive object due to a Newtonian force.
Resumo:
We discuss the role of dissipation in the explosive spinodal decomposition scenario of hadron production during the chiral transition after a high-energy heavy ion collision. We use a Langevin description inspired by microscopic nonequilibrium field theory results to perform real-time lattice simulations of the behavior of the chiral fields. We show that the effect of dissipation can be dramatic. Analytic results for the short-time dynamics are also presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G = partial derivative F + fAF arises besides the one of the first order treatment, F = partial derivative A - partial derivative A + fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is L-P alpha G(2). In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)(3) precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the regularization ambiguities in an exact renormalized (1 + 1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.