144 resultados para chiral electrodes
Resumo:
We show that the implementation of chiral symmetry in recent studies of the hadron spectrum in the context of the constituent quark model is inconsistent with chiral perturbation theory. In particular, we show that the leading nonanalytic (LNA) contributions to the hadron masses are incorrect in such approaches. The failure to implement the correct chiral behaviour of QCD results in incorrect systematics for the corrections to the masses. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new Faddeevian regularization, is examined and extended. We find a new and important result that the Faddeevian class, with three second-class constraints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class which is the only nonambiguous class with a unique regularization parameter. ©1999 The American Physical Society.
Resumo:
We determine the critical coupling constant above which dynamical chiral symmetry breaking occurs in a class of QCD motivated models where the gluon propagator has an enhanced infrared behavior. Using methods of bifurcation theory we find that the critical value of the coupling constant is always smaller than the one obtained for QCD. ©2000 The American Physical Society.
Resumo:
Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.
Resumo:
We have studied the theory of gauged chiral bosons and proposed a general theory, a master action, that encompasses different kinds of gauge field couplings in chiral bosonized theories with first-class chiral constraints. We have fused opposite chiral aspects of this master action using the soldering formalism and applied the final action to several well-known models. The Lorentz rotation permitted us to fix conditions on the parameters of this general theory in order to preserve the relativistic invariance. We also have established some conditions on the arbitrary parameter concerned in a chiral Schwinger model with a generalized constraint, investigating both covariance and Lorentz invariance. The results obtained supplement the one that shows the soldering formalism as a new method of mass generation. ©2001 The American Physical Society.
Resumo:
Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Bornite electrodes were characterized in the absence or in the presence of Acidithiobacillus ferrooxidans, which is an important microorganism involved in metal bioleaching processes. The presence of the bacterium modified the mineral/electrolyte interface, increasing the corrosion rate, as revealed by interferometric, AEM, ICP and EIS analyses. As a consequence of bacterial activity the electrode became porous, increasing its surface heterogeneity. This behavior was correlated with the evolution of impedance diagrams obtained during the time course of experiments. The main difference in these diagrams was the presence of an inductive feature (up to 44 h), which was related to bacterial action on the mineral dissolution, better than to its adhesion on the bornite. The total real impedance measured in presence of the bacterium was about 10 times lower than in its absence, due to the acceleration of the mineral dissolution, because an oxidant environment was maintained.
Resumo:
In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L-1 of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L-1 NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photoelectrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.
Resumo:
Probe-beam deflection (PBD) was used to monitor concentration gradients of anions adjacent to the surface of a platinum electrode in acidic aqueous media containing H3PO4. PBD can measure the potential-dependent extent of adsorption of H2PO4- on the Pt electrode surface and permits the Langmuir isotherm to be fitted to the experimental data. The value thus obtained for the surface concentration was 1.3 × 10-11 mol mm -2, or 1.7 atoms of Pt per H2PO4-. Also, the electron transfer number obtained was 0.24, signifying an incomplete transfer of charge, and the equilibrium constant is 1.80 suggesting a reversible adsorption process. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an investigation concerning the use of fundamental approximation analysis and a new lamp model for the prediction of the voltage over electrodes' filaments during dimming operation. The lamp model employed in this paper is based on equivalent resistances, which represent the electrodes' filaments and the gas column of a F32T8 lamp. Experimental results are presented in this paper, indicating the validity of the proposed analysis and confirming its potential to serve as an effective tool for the design of dimming electronic ballasts. © 2005 IEEE.
Resumo:
We use an improved Langevin description that incorporates both additive and multiplicative noise terms to study the dynamics of phase ordering. We perform real-time lattice simulations to investigate the role played by different contributions to the dissipation and noise. Lattice-size independence is assured by the use of appropriate lattice counterterms. © 2006 American Institute of Physics.
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Resumo:
The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N6,2,2,2][N(Tf)2], 1-butyl-3-methylimidazolium hexafluorosphosphate [C4mim][PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4mpyrr][N(Tf)2], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][N(Tf)2], N-butyl-N-methyl-pyrrolidinium dicyanamide [C4mpyrr][N(NC)2] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P14,6,6,6][FAP] on a platinum microelectrode. In [N6,2,2,2][NTf2] and [P14,6,6,6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P14,6,6,6][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N6,2,2,2][NTf2] and [P14,6,6,6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. © 2009 Elsevier B.V.
Resumo:
Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form 1/(k2 +m2)2 and we study the bifurcation equation finding limits on the parameter m below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of m, finding values compatible with the experimental data. We find a simple approximate relation between the fermion condensate and dynamical mass for a given representation as a function of the parameters appearing in the effective confining propagator. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.