273 resultados para bone morphogenetic protein 15
Resumo:
Background: The purpose of this study was to histometrically evaluate the influence of photodynamic therapy on bone loss in furcation areas in rats with experimentally induced periodontal disease.Methods: Ligatures were placed on the first mandibular molar in rats. Then the animals were divided into four groups: control group = no treatment; methylene blue group (MB) = treated topically with methylene blue (100 mu g/ml); laser group (LLLT) = treated with low-level laser therapy; and photodynamic therapy group (PDT) = treated topically with MB followed by LLLT (4.5 J/cm(2)). Rats from all groups were sacrificed at 7, 15, or 30 days postoperatively. The area of bone loss in the furcation region of the first molar was histometrically analyzed. Data were analyzed statistically (analysis of variance and Bonferroni tests; P<0.05).Results: The PDT group demonstrated less bone loss compared to the other groups at 7 days (1.986 +/- 0.417 mm(2)); at 15 days, the PDT (1.641 +/- 0.115 mm(2)) and MB groups (1.991 +/- 0.294 mm(2)) demonstrated less bone loss compared to the control (4.062 +/- 0.416 mm(2)) and LLLT (2.641 +/- 0.849 mm(2)) groups.Conclusion: Within the parameters used in this study, PDT may be an effective alternative for control of bone loss in furcation areas in periodontitis.
Resumo:
Purpose: It is unknown whether different micro gap configurations can cause different pen-implant bone reactions. Therefore, this study sought to compare the peri-implant bone morphologies of two implant systems with different implant-abutment connections. Materials and Methods: Three months after mandibular tooth extractions in six mongrel dogs, two oxidized screw implants with an external-hex connection were inserted (hexed group) on one side, whereas on the contralateral side two grit-blasted screw implants with an internal Morse-taper connection (Morse group) were placed. on each side, one implant was inserted level with the bone (equicrestal) and the second implant was inserted 1.5 mm below the bony crest (subcrestal). Healing abutments were inserted immediately after implant placement. Three months later, the peri-implant bone levels, the first bone-to-implant contact points, and the width and steepness of the peri-implant bone defects were evaluated histometrically. Results: All 24 implants osseointegrated clinically and histologically. No statistically significant differences between the hexed group and Morse group were detected for either the vertical position for peri-implant bone levels (Morse equicrestal -0.16 mm, hexed equicrestal -0.22 mm, Morse subcrestal 1.50 mm, hexed subcrestal 0.94 mm) or for the first bone-to-implant contact points (Morse equicrestal -2.08 mm, hexed equicrestal -0.98 mm, Morse subcrestal -1.26 mm, hexed subcrestal -0.76 mm). For the parameters width (Morse equicrestal -0.15 mm, hexed equicrestal -0.59 mm, Morse subcrestal 0.28 mm, hexed subcrestal -0.70 mm) and steepness (Morse equicrestal 25.27 degree, hexed equicrestal 57.21 degree, Morse subcrestal 15.35 degree, hexed subcrestal 37.97 degree) of the pen-implant defect, highly significant differences were noted between the Morse group and the hexed group. Conclusion: Within the limits of this experiment, it can be concluded that different microgap configurations influence the size and shape of the peri-implant bone defect in nonsubmerged implants placed both at the crest and subcrestally. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:540-547
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article reports a longitudinal follow-up of a 15-month-old child with dental trauma resulting from an attack by a dog. The injury consisted of laceration of the facial tissues and loss of the upper central deciduous incisors, in addition to loss of bone tissue in the same area. A malformation of the crown of the right central permanent incisor and complete change of the shape of the left central permanent incisor were observed. The etiological factors of childhood injuries as well as the importance of dental emergency care are discussed and the 14-year clinical and radiographic follow up of the case is presented.
Resumo:
Background and Objectives: Bone remodeling is characterized as a cyclic and lengthy process. It is currently accepted that not only this dynamics is triggered by a biological process, but also biochemical, electrical, and mechanical stimuli are key factors for the maintenance of bone tissue. The hypothesis that low-level laser therapy (LLLT) may favor bone repair has been suggested. The purpose of this study was to evaluate the bone repair in defects created in rat lower jaws after stimulation with infrared LLLT directly on the injured tissue.Study Design/Materials and Methods: Bone defects were prepared on the mandibles of 30 Holtzman rats allocated in two groups (n = 15), which were divided in three evaluation period (15, 45, and 60 days), with five animals each. control group-no treatment of the defect; laser group-single laser irradiation with a GaAlAs semiconductor diode laser device (lambda = 780 nm; P = 35 mW t = 40 s; circle minus = 1.0 mm; D = 178 J/cm(2); E = 1.4 J) directly on the defect area. The rats were sacrificed at the preestablished periods and the mandibles were removed and processed for staining with hematoxylin and eosin, Masson's Trichrome and picrosirius techniques.Results: the histological results showed bone formation in both groups. However, the laser group exhibited an advanced tissue response compared to the control group, abbreviating the initial inflammatory reaction and promoting rapid new bone matrix formation at 15 and 45 days (P < 0. 05). on the other hand, there were no significant differences between the groups at 60 days.Conclusion: the use of infrared LLLT directly to the injured tissue showed a biostimulating effect on bone remodeling by stimulating the modulation of the initial inflammatory response and anticipating the resolution to normal conditions at the earlier periods. However, there were no differences between the groups at 60 days.
Resumo:
Background: It is well known that the multiple direct and indirect consequences of hyperglycemia in diabetic individuals have been linked to a number of abnormal host effector mechanisms that could lead to an increased risk of developing periodontal disease.Objective: the aim of this study was to investigate the effect of short-term experimental diabetes and insulin therapy on the severity of alveolar bone loss in rats, and the effect of experimental periodontitis on glycemic control.Methods: Seventy-two male Wistar rats were divided into four groups: group I animals were submitted to dental ligature around lower right first molars (ligated); group II consisted of streptozotocin (STZ)-diabetic, ligated rats; group III represented STZ-diabetic, unligated rats; and group IV consisted of insulin-treated (6 U/day), STZ-diabetic, ligated rats. Blood glucose of all diabetic rats was monitored at regular intervals. Standardized digital radiographs were taken after killing at 7, 15 and 30 days to measure the amount of bone loss about the mesial root surface of the first molar tooth in each rat.Results: No significant (p < 0.05) changes in plasma glucose levels of insulin-treated diabetic rats were found among the different examinations after the beginning of insulin therapy. Rats from group II showed significantly greater increases in mean plasma glucose levels at 15 and 30 days after ligature placement compared with rats from group III (p < 0.05). Furthermore, in spite of the significant alveolar bone loss progression that was observed in groups I, II and IV (p < 0.00001; two-way ANOVA), no significant differences among these groups regarding the severity of bone loss (p = 0.77) and no significant interaction between treatment group and time (p = 0.81) were found.Conclusions: Within the limits of this study, it can be suggested that the severity of periodontal disease was not affected by short-term diabetes, and that experimental periodontitis increased blood glucose levels in uncontrolled diabetic rats.
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial.
Resumo:
The aim of this study was to assess vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in maxillary sinus augmentation with autogenous bone and different graft materials for evaluating their angiogenic potential.Biopsies were harvested 10 months after sinus augmentation with a combination of autogenous bone and different graft materials: hydroxyapatite (HA, n = 6 patients), demineralized freeze-dried bone allograft (DFDBA, n = 5 patients), calcium phosphate (CP, n = 5 patients), Ricinus communis polymer (n = 5 patients) and control group - autogenous bone only (n = 13 patients).In all the samples, higher intensities of VEGF expression were prevalent in the newly formed bone, while lower intensities of VEGF expression were predominant in the areas of mature bone. The highest intensity of VEGF expression in the newly formed bone was expressed by HA (P < 0.001) and CP in relation to control (P < 0.01) groups. The lowest intensities of VEGF expression in newly formed bone were shown by DFDBA and polymer groups (P < 0.05). When comparing the different grafting materials, higher MVD were found in the newly formed bone around control, HA and CP (P < 0.001).Various graft materials could be successfully used for sinus floor augmentation; however, the interactions between bone formation and angiogenesis remain to be fully characterized.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mitogen-activated protein (MAP) kinase phosphatase (MKP) family plays an important function in regulating the pro-inflammatory cytokines by deactivating MAP kinases. MKP-1 is essential for the dephosphorylation of p38 MAP kinase that regulates expression of IL-6, TNF-alpha, and IL-1 beta. We hypothesized that MKP-1 regulates inflammatory bone loss in experimental periodontitis. Wild-type and Mkp-1(-/-) mice received A. actinomycetemcomitans LPS injection in the palatal region or PBS control 3 times/wk for 30 days. Mice were killed, and maxillae were assessed by microcomputed tomography, histological analysis, and TRAP staining for measurement of bone loss, extent of inflammation, and degree of osteoclastogenesis. Results indicated that, in LPS-injected Mkp-1(-/-) mice, significantly greater bone loss occurred with more inflammatory infiltrate and a significant increase in osteoclastogenesis compared with Mkp-1(-/-) control sites or either wild-type group. Analysis of these data indicates that MKP-1 plays a key role in the regulation of inflammatory bone loss.
Resumo:
Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due, in part, to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5 x 10(8) or 5.5 x 10(9) pfu ml (1)), Ad encoding luciferase (Ad-Luc; 5.5 x 10(9) pfu ml (1); control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg ml (1)). Bone repair and osseointegration were measured through backscattered scanning electron microscopy, histomorphometry, microcomputed tomography and biomechanical assessments. Furthermore, a panel of local and systemic safety assessments was performed. Results indicated that bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared with Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B shows regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable with rhPDGF-BB protein delivery in vivo. Gene Therapy (2010) 17, 95-104; doi: 10.1038/gt.2009.117; published online 10 September 2009