221 resultados para bloqueador neuromuscular
Resumo:
The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
The behavioral effects of crotoxin (CTX), the major component of Crotalus durissus terrificus venom, were studied in rats submitted to the open field, holeboard, and social interaction tests. CTX (100, 250, and 500 mu g/kg, IP) was administered 2 h before the tests. In the open field, CTX reduced ambulation (250 mu g/kg) and rearing (250 and 500 mu g/kg) and increased grooming (100 and 250 mu g/kg) and freezing (250 mu g/kg). In the holeboard and social interaction, all the CTX doses evaluated decreased, respectively, head dip and head dipping, and social interaction time. The CTX-induced behavioral alterations could be attributed to its neuromuscular transmission blockade, but this possibility was ruled out because CTX (250 and 500 mu g/kg, IP, 2 h before the rotarod test) was unable to modify the rotarod performance of rats. The involvement of the benzodiazepine receptor in the CTX-induced behavioral alterations was investigated through the pretreatment (30 min before the tests, IP) of the animals with diazepam (1.2 mg/kg), or flumazenil (4 and 10 mg/kg). Both diazepam and flumazenil antagonized the CTX induced behavioral alterations in the open field, holeboard, and social interaction tests. This study demonstrated that: (1) CTX is an anxiogenic compound; and (2) the gabaergic-benzodiazepine system may play a role in the CTX-induced anxiogenic effect. (C) 1999 Elsevier B.V.
Resumo:
A total of 163 dogs with neuromuscular, respiratory and/or gastrointestinal disorders, was admitted at the Veterinary Hospital, Federal University of Uberlandia, Brazil, and submitted to serology for Toxoplasma gondii and Neospora caninum. Assays for T gondii included indirect haemagglutination (IHA), indirect fluorescent antibody (IFAT-Tg), immunoenzymatic (ELISA), and immunoblotting (IB-Tg). Assays for N, caninum included IFAT-Nc and immunoprecipitation (IP-Nc). Based on concordant results by three serological tests (IHA, IFAT-Tg and ELISA) for T gondii, and divergent results further confirmed by IB-Tg for reactivity to TgSAG1, the 163 sera were divided into two groups: 59 (36%) Tg-seropositive samples and 104 (64%) Tg-seronegative samples. Antibodies to Neospora were detected in 11 (6.7%) out of 163 analyzed dog sera, with 5 (3.1 %) samples reactive to both parasites (Tg+/Nc+), and 6 (3.7%) reactive only to Neospora (Tg-/Nc+). Antibodies only to T: gondii were found in 54 (33%) samples. Among the 11 Neospora-positive sera analyzed by IB-Tg, the five sera Tg+/Nc+ showed strong reactivity to Toxoplasma antigens, especially to TgSAG1 (p30). No reactivity was observed to TgSAG1 in the six samples Tg-/Nc+. By TP-Nc, two highly immunodominant antigens (29 and 35 kDa proteins) were recognized by all 11 IFAT-Nc positive sera. Our results suggest that the infection by N, caninum can be concomitantly present in dogs from this area, although less common, and therefore should be considered in the differential clinical diagnosis with T. gondii in dogs presenting neuromuscular, respiratory and/or gastrointestinal disorders. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action or alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX stowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.
Resumo:
Piratoxins (PrTX) I and III are phospholipases A(2) (PLA(2)s) or PLA(2) homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA(2), while PrTX-I is a Lys49 PLA, homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities. (C) 2001 Academic Press.
Resumo:
The mechanisms underlying the fade of the tetanic contraction induced by pancuronium were studied in vitro by means of myographical and electrophysiological techniques in the extensor digitorum longus muscle of the rat. Pancuronium (0.5 mu mol/l) induced a complete fade of the tetanic contraction while leaving the twitch unaffected. At the same concentration it decreased the amplitude and increased the tetanic rundown of trains of endplate potentials (e.p.ps) evoked in the frequency of 50 Hz. The electrophysiological changes induced by pancuronium were due to decreases in both quantal sizes and quantal contents of the e.p.ps. The former effect was the result of a postsynaptic competitive action and the latter of a presynaptic inhibitory action of that compound. The decrease in quantal. content affected the e.p.ps starting from the first in the train and became larger during the generation of the sequence of e.p.ps. This intensified their tetanic rundown. It is concluded that the fade of the tetanic contraction induced by pancuronium is due to a summation of pre- and postsynaptic actions and, therefore, not only to an increase in the tetanic rundown of e.p.ps. Possible explanations for the distinct abilities of neuromuscular blockers in affecting tetani and twitches in a differential manner are also discussed.
Resumo:
Pompilidotoxins (PMTXs), derived from the venom of solitary wasp has been known to facilitate synaptic transmission in the lobster neuromuscular junction, and a recent further study from rat trigeminal neurons revealed that the toxin slows Na+ channel inactivation without modifying activation process. Here we report that beta -PMTX modifies rat brain type II Na+ channel alpha -subunit (rBII) expressed in human embryonic kidney cells but fails to act on the rat heart alpha -subunit (rH1) at similar concentrations. We constructed a series of chimeric mutants of rBII and rH1 Na+ channels and compared modification of the steady-state Na+ currents by beta -PMTX. We found that a difference in a single amino acid between Glu-1616 in rBII and Gln-1615 in rH1 at the extracellular loop of D4S3-S4 is crucial for the action of beta -PMTX. PMTXs, which are small peptides with 13 amino acids, would be a potential tool for exploring a new functional moiety of Na+ channels.
Resumo:
Several studies have demonstrated that caffeine improves endurance exercise performance but the mechanisms are not fully understood. Possibilities include increased free fatty acid (FFA) oxidation with consequent sparing of muscle glycogen as well as enhancement of neuromuscular function during exercise. The present study was designed to investigate the effects of caffeine on liver and muscle glycogen of 3-month old, male Wistar rats (250-300 g) exercising by swimming. Caffeine (5 mg/kg) dissolved in saline (CAF) or 0.9% sodium chloride (SAL) was administered by oral intubation (1 mu l/g) to fed rats 60 min before exercise. The rats (N = and-IO per group) swam bearing a load corresponding to 5% body weight for 30 or 60 min. FFA levels were significantly elevated to 0.475 +/- 0.10 mEq/l in CAF compared to 0.369 +/- 0.06 mEq/l in SAL rats at the beginning of exercise. During exercise, a significant difference in FFA levels between CAF and SAL rats was observed at 30 min (0.325 +/- 0.06 vs 0.274 +/- 0.05 mEq/l) but not at 60 min (0.424 +/- 0.13 vs 0.385 +/- 0.10 mEq/l). Blood glucose showed an increase due to caffeine only at the end of exercise (CAF = 142.1 +/- 27.4 and SAL = 120.2 +/- 12.9 mg/100 ml). No significant difference in liver or muscle glycogen was observed in CAF as compared to SAL rats, at rest or during exercise. Caffeine increased blood lactate only at the beginning of exercise (CAF = 2.13 +/- 0.2 and SAL = 1.78 +/- 0.2 mmol/l). These data indicate that caffeine (5 mg/kg) has no glycogen-sparing effect on rats exercising by swimming even though the FFA levels of CAF rats were significantly higher at the beginning of exercise.
Resumo:
The objective of this study was to determine intraocular pressure (IOP) and cardiac changes in normocapnic dogs maintained under controlled ventilation and anesthetized using sevoflurane or desflurane. Sixteen healthy adult mixed-breed dogs, seven males and nine females, weighing 10-15 kg were used. The dogs were randomly assigned to one of two groups composed of eight animals anesthetized with sevoflurane (SEVO) or desflurane (DESF). In both groups, anesthesia was induced with propofol (10 mg/kg), and neuromuscular blockade was achieved with rocuronium (0.6 mg/kg/h IV). No premedication was given. Ventilation was adjusted to maintain end-tidal carbon dioxide partial pressure at 35 mmHg. Anesthesia was maintained with 1.5 minimum alveolar concentration (MAC) of sevoflurane or desflurane. In both groups IOP was measured by applanation tonometry (Tono-Pen) before induction of anesthesia. IOP, mean arterial pressure (MAP), heart rate (HR), cardiac index (CI) and central venous pressure (CVP) were also measured 45 min after the beginning of inhalant anesthesia and then every 20 min for 60 min. A one-way repeated measures ANOVA was used to compare data within the same group and Student's t-test was used to assess differences between groups. P < 0.05 was considered statistically significant. Measurements showed normal IOP values in both groups, even though IOP increased significantly from baseline during the use of desflurane. IOP did not differ between groups. CI in the desflurane group was significantly greater than in the sevoflurane group. Sevoflurane and desflurane have no clinically significant effects on IOP, MAP, HR, CI or VCP in the dog.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The myoneural junctions present in the opossum (Didelphis albiventris) extraocular muscles were studied through histochemical and ultrastructural techniques. Three different types of junction were shown: two single types, 'en grappe' and 'en plaque', present in the middle third of the muscle fibers; and one multiple type, more rare and observed in the distal third of the muscle.
Resumo:
Background and Objectives - Pulmonary aspiration of gastric content during induction of anesthesia for emergency surgical procedures is a serious complication; fast endotracheal intubation under these circumstances is of vital importance to secure the airways. Despite its numerous side effects, succinylcholine is used for this purpose. Rocuronium is the most recently introduced aminoesteroid neuromuscular blocking drug with short onset. The objective of this study was to compare the onset time and intubating conditions of rocuronium and succinylcholine. Methods - After informed consent, forty-five patients were randomly allocated into three groups of 15: Group I (GI) = succinylcholine 1 mg.kg-1; Group II (GII) = rocuronium 0.6 mg.kg-1; Group III (GIII) = rocuronium 0.9 mg.kg-1. Every patient was premedicated with midazolam 15 mg per os and induction of anesthesia was made with fentanyl 10 μg.kg-1 and etomidate 0.3 mg.kg-1. The neuromuscular block was monitored with the TOP-Guard neuromuscular transmission monitor. The TOP-Guard neuromuscular monitor uses an accelerometer to measure the response to nerve stimulation. The stimulating electrodes were placed close to the course of the ulnar nerve at the wrist. The onset time was considered as the time between the end of neuromuscular drug injection and the twitch height (T1) decrease to 10%. Heart rate and arterial blood pressure were registered at 6 moments before and after induction of anesthesia. Results - The onset time results were: Group I, 71 s; Group II, 120 s and Group III, 70 s or GI = GIII < GII (F = 8.862; p < 0.01). There were 43 patients exhibiting excellent intubating conditions and 2 with good intubating conditions. Heart rate and arterial blood pressure showed alterations due to induction of anesthesia and intubation. Conclusions - Rocuronium 0.9 mg.kg-1 can be used in rapid sequence induction because it has a short onset time which is similar to that of succnylcholine. It is likely that rocuronium would be a good indication in patients with high intracranial pressure, burns and neuromuscular diseases.