184 resultados para Urban Heat Island Effect
Resumo:
The effect of temperature on the activity of acerola's pectin methylesterase (PME) was studied to determine its heat-inactivation. The acerola's pectin methylesterase (PME; EC: 3.1.1.11) is very stable at 50 degrees C (10% loss of activity in 100 min) and needed 110 min for its inactivation at 98 degrees C. These values are much higher than the ones required for inactivation of the citrus PME, that has been reported as being equal to 1 min at 90 degrees C. Heat-inactivation of PME was shown to be nonlinear, suggesting the presence of fractions of PME with differing heat-stabilities. The times to inactive the enzyme at 98, 102 and 106 degrees C were 110, 10 and 2.17 min, respectively. The Z value (the rise in temperature necessary to observe a ten times faster heat-inactivation) was 4.71 degrees C. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Well-fitted dentures prevent hyperplasic lesions, provide chewing efficiency and promote patient's comfort. Several factors may affect final adaptation of dentures, as the type of the acrylic resin, the flask cooling procedure and the water uptake. This investigation evaluated the effect of water storage and two different cooling procedures [bench cooling (BC) for 2 h; running water (RW) at 20 degreesC for 45 min] on the final adaptation of denture bases. A heat-cured acrylic resin (CL, Classico, Classico Artigos Odontologicos) and two microwave-cured acrylic resins [Acron MC, (AC) GC Dent. Ind. Corp.; Onda Cryl (OC), Classico Artigos Odontologicos] were used to make the bases. Adaptation was assessed by measuring the weight of an intervening layer of silicone impression material between the base and the master die. Data was submitted to ANOVA and Tukey's test (0.05). The following means were found: (BC) CL=0.72 +/- 0.03 a; AC=0.70 +/- 0.03 b; OC=0.76 +/- 0.04 c//(RW) CL= 1.00 +/- 0.11 a; AC=1.00 +/- 0.12 a; OC=0.95 +/- 0.10 a. Different labels join groups that are not statistically different (P > 0.05). Comparisons are made among groups submitted to the same cooling procedure (BC or RW). The conclusions are: interaction of type of material and cooling procedure had a statistically significant effect on the final adaptation of the denture bases (P < 0.05); water storage was not detected as a source of variance (P > 0.05) on the final adaptation.
Resumo:
The analysis of the effect of soil water matric potential and temperature regimes on the inactivation of chlamydospores of Phytophthora nicotianae in cabbage amended soils was evaluated using three matric potentials (0, -10, and -30 kPa), temperature regimes of 1.5 h at 44 degreesC, 5 h at 41 degreesC and 8 h at 35 degreesC, or 3 h at 47 degreesC, 5 h at 44 degreesC and 8 h at 35 degreesC, with a baseline temperature of 25 degreesC during the rest of the day. The results indicated that survival of P. nicotianae was lowest in saturated soil; and as temperature increased, survival of the pathogen decreased at all soil water matric potentials evaluated. Cabbage amendments can enhance the effect of the heat treatment, further decreasing the pathogen population. The soil water matric potentials evaluated represent optimum levels for the study of thermal inactivation. However, under field conditions lower potentials may be found. Extending the range of soil water matric potentials and the treatment time would allow better comparisons with the field data. There is a clear indication that one irrigation period prior to solarization would provide enough moisture to inactivate the primary inoculum of P. nicotianae in the top soil under field conditions; however, other factors may affect the effectiveness of solarization, reducing or enhancing its potential.
Resumo:
Heat capacities of binary aqueous solutions of different concentrations of sucrose, glucose, fructose, citric acid, malic acid, and inorganic salts were measured with a differential scanning calorimeter in the temperature range from 5degreesC to 65degreesC. Heat capacity increased with increasing water content and increasing temperature. At low concentrations, heat capacity approached that of pure water, with a less pronounced effect of temperature, and similar abnormal behavior of pure water with a minimum around 30degreesC-40degreesC. Literature data, when available agreed relatively well with experimental values. A correction factor, based on the assumption of chemical equilibrium between liquid and gas phase in the Differential Scanning Calorimeter, was proposed to correct for the water evaporation due to temperature rise. Experimental data were fitted to predictive models. Excess molar heat capacity was calculated using the Redlich-Kister equation to represent the deviation from the additive ideal model.
Resumo:
Previously, we reported that thermal conditioning at 39degreesC on days 13-17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30degreesC was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39degreesC at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6degreesC. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO(2), pO(2) levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO(2) levels and blood pH but depressed pCO(2) at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14-15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14-15 only may improve these production parameters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d = 2 up to d = 7. The localization of the agents in the lattice defines that their social neighborhood (rural or urban) is not related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d = 6, 7).
Resumo:
Methane and carbon dioxide seasonal cycles during years 1998 and 1999 at two Brazilian urban and inland sites are presented. The mixing ratio averages over the studied period of time were 1.80 ppm CH4 and 384.7 ppm CO2. A comparison is made between continental averages and the averages of the three nearest global network background sites of NOAA-CMDL comprising Ascension Island, Namibia and Easter Island. Inland sites had 0.08 ppm or 4.9% more CH4 and 19.0 ppm or 4.9% more CO2 than background over the same time span. The CH4 summer minimum observed in remote sites was also detected inland. During the month of October 98 and 99 inland mixing ratios were frequently similar to background.
Resumo:
A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8(+) lung cell activation, interferon-gamma recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-alpha. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-gamma and to restrict the growth of bacilli.
Resumo:
Moisture equilibrium data of pineapple pulp (PP) powders with and without additives - 18% maltodextrin (MD) or 18% gum Arabic (GA) - were determined at 20, 30, 40 and 50 degrees C by using the static gravimetric method in a water activity range of 0.06-0.90. The obtained isotherms were sigmoid, typical type 111, and the Guggenhein-Anderson-de Boer (GAB) model was fitted to the experimental data of equilibrium moisture content versus water activity. Addition of additives was shown to affect the isotherms in such a way that, at the same water activity, samples PP + GA and PP + MD presented lower equilibrium moisture content and were not so affected by varying temperature. The net isosteric heats of sorption of pulp powders with additives were higher (less negative) than those of pineapple pulp powders, suggesting that there are more active polar sites in the product without addition of GA or MD. An empirical exponential relationship could describe the heat of sorption dependence on the material moisture content. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Sensitive immunologic techniques for the detection of alterations that occur in protein antigens were used to evaluate the immunogenicity of soybean glycinin after isolation, heat denaturation and pH alteration. The objective was to determine the effect of these agents on the immunogenic ability of this protein fraction. Immunologic assays performed on heat-denatured glycinin up to 80 degrees C in the presence of antinative glycinin serum demonstrated that glycinin retains its immunogenic properties. Above 90 degrees C this biological property begins to disappear, with protein insolubilization and epitope modification due to the conformational changes imposed by temperature. A reduction in immunogenicity also occurred when glycinin was taken to pH 2.0 (below its pi) and pH 11.00 (above its pi) and exposed to high temperatures in the presence of native antiglycinin serum. From these data one can conclude that, at extreme pH values, intramolecular reactions may occur which, in combination with the structural disorganization caused by high temperatures, may contribute to the reduction of immunogenicity.
Resumo:
Freshly harvested lemons [(Citrus limon (L.) Burm)] were dipped 3 min in water with and without imazalil (IMZ) at 50, 100, and 200 ppm at 50 degrees C and at 1000 ppm IMZ at 20 degrees C. Following treatments fruit were kept at 9 degrees C and 90%-95% relative humidity (RH) for 13 weeks and an additional week at 21 degrees C and ca. 75% RH, to simulate a marketing period (SMP). No decay control was observed with fruit dipped in water at 50 degrees C. In contrast, IMZ treatments provided 90%-96% control of Penicillium rots during cold storage and SMP. Fungi other than Penicillium spp. were also found in all samples as differences among treatments were negligible. IMZ treatment caused some external damage to the fruit (peel browning), and the percentage of damaged fruit was related to the amount of active ingredient (AI) present in it. Dipping in 200 or 1000 ppm IMZ promoted off-flavor development after 10 weeks of storage, and fruit were judged to be unacceptable for consumption after 13 weeks of cold storage. After 1000 ppm IMZ dipping at 20 degrees C, residue concentration in fruit was 8.20 ppm; this value doubled that found in a previous investigation on lemons treated with comparable IMZ levels. Residue concentrations in fruit after treatment at 50 degrees C was strictly related to the amount of fungicide employed. After 13 weeks Al residues in fruit decreased to average ca. 35% of the initial values. During the 1 week SMP, residue levels decreased by a further ca. 25%. It was concluded that it is possible to achieve significant control of decay in lemons during longterm storage by dipping fruit in 50 ppm IMZ mixtures at 50 degrees C. Such treatment should be advised to remarkably reduce potential pollution in the environment due to packinghouse wastewater disposal.
Resumo:
Statement of problem. Acrylic resin denture teeth soften upon immersion in water, and the heating generated during microwave sterilization may enhance this process.Purpose. Six brands of acrylic resin denture teeth were investigated with respect to the effect of microwave sterilization and water immersion on Vickers hardness (VHN).Material and Methods. The acrylic resin denture teeth (Dentron [D], Vipi Dent Plus [V], Postaris [P], Biolux [B], Trilux [T], and Artiplus [A]) were embedded in heat-polymerized acrylic resin within polyvinylchloride tubes. For each brand, the occlusal surfaces of 32 identical acrylic resin denture posterior teeth were ground flat with 1500-grit silicon carbide paper and polished on a wet polishing wheel with a slurry of tin oxide. Hardness tests were performed after polishing (control group, C) after polishing followed by 2 cycles of microwave sterilization at 650 W for 6 minutes (MwS group), after polishing followed by 90-day immersion in water (90-day Wim group), and after polishing followed by 90-day storage in water and 2 cycles of microwave sterilization (90-day Wim + MwS group). For each specimen, 8 hardness measurements were made and the mean was calculated. Data were analyzed with a 2-way analysis of variance followed by the Bonferroni procedure to determine any significance between pairs of mean values (alpha=.01).Results: Mircrowave sterilization of specimens significantly decreased (P <.001) the hardness of the acrylic resin denture tooth specimens P (17.8 to 16.6 VHN, V (18.3 to 15.8 VHN), T (17.4 to 15.3 VHN), B (16.8 to 15.7 VHN), and A (17.3 to 15.7 VHN). For all acrylic resin denture teeth, no significant differences in hardness were found between the groups Mws, 90-day Wim, and 90-day Wim + MwS, with the exception of the 90-day Wim + MwS tooth A specimens (14.4 VHN), which demonstrated significant lower mean values (P <.001) than the 90-day Wim (15.8 VHN) and MwS (15.7 VHN) specimens.Conclusions. For specimens immersed in water for 90 days, 2 cycles of microwave sterilization had no effect on the hardness of most of the acrylic resin denture teeth.
Resumo:
The effect of milk processing on rheological and textural properties of probiotic low-fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.
Resumo:
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7 degrees C to 40.0 degrees C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.
Resumo:
The study of the photoluminescent properties affected by order and disorder of the BaMoO4 powders is the principal objective in this work. BaMoO4 compounds were prepared using soft chemical process called Complex Polymerization Method. In this work, different deagglomeration types and different heating rates were used to promote different disorder degrees. Scheelite type phase (BaMoO4) was determined by X-ray Diffraction (XRD), Fourier Transformed Infra-Red (FTIR) and Raman spectroscopy after heat treating the sample at 400 degrees C. The room temperature luminescence spectra revealed an intense single-emission band in the visible region. Based on XRD and Raman data it was observed that the transition between the completely disordered structure to completely ordered structure is a good condition for photoluminescence (PL) emission. The best PL emission is obtained when the material possesses short range disorder, i.e., is periodically ordered (XRD), but some disorder as measured by Raman spectroscopy. The excellent optical properties observed for disordered BaMoO4 suggested that this material is a highly promising candidate for optical applications.