114 resultados para Transplacental transfer
Resumo:
Two experiments were conducted to examine the effects of broiler breeder dietary grain source and cage density on maternal antibody (MatAb) transfer to progeny in 2 genetic strains (A and B). Broiler breeders were assigned to 16 litter floor pens and fed either corn- or wheat-based diets. Breeders were administered 4 live vaccines against Newcastle disease virus (NDV). At 23 wk of age, pullets and cocks, which reflected the full BW distribution from each treatment, were moved to a cage breeder house and placed at 1 or 2 hens/cage. Breeders were artificially inseminated at 44 wk (experiment 1) and 52 wk of age (experiment 2). Eggs were collected for 8 d, incubated, and placed in individual pedigree bags at d 19 of incubation. Blood samples from 5 chicks per treatment combination were collected at hatch in both experiments. Spleen and bursa were collected from the same chicks for histomorphometry analyses in experiment 2. In the second experiment, 12 chicks per treatment were placed in cages. Progeny were provided diets based on the same grain (corn or wheat) as their parents. Serum samples were collected at 5, 9, and 13 d of age and analyzed for anti-NDV MatAb. Data were analyzed as a 2 x 2 x 2 factorial design considering strain, dietary grain source, and cage density as main factors. Interaction effects were observed in breeders and progeny. Experiment 1 showed that strain A chicks had lower levels of MatAb when hens were housed at 2 hens/cage rather than 1 hen/cage. The MatAb levels of strain B chickens were not affected by cage density in either experiment. Experiment 2 demonstrated similar effects of cage density on MatAb levels and the area of bursa follicles for both strains. Progeny of breeders fed corn-based diets had smaller spleen white pulp only when hens were housed at 2 hens/cage compared with 1 hen/cage. The results of these experiments suggest that breeder strain and cage-density conditions affected MatAb transfer to progeny and embryo development of spleen and bursa.
Resumo:
We report the infrared-to-visible frequency upconversion in Er3+-Yb3+-codoped PbO-GeO2 glass containing silver nanoparticles (NPs). The optical excitation is made with a laser at 980 nm in resonance with the F-2(5/2)-> F-2(7/2) transition of Yb3+ ions. Intense emission bands centered at 525, 550, and 662 nm were observed corresponding to Er3+ transitions. The simultaneous influence of the Yb3+-> Er3+ energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of the whole frequency upconversion spectra.
Resumo:
Maternal antibody (MatAb) transfer is important for early chicken survivability. Diet composition and the amount of feed given to breeder pullets during rearing may affect the development of immunity and the transfer of MatAb to progeny, and could affect progeny performance and resistance to disease. The effects of broiler breeder nutrition and feeding management practices were evaluated for the transfer of MatAb to progeny and for spleen and bursa development at hatching in 2 genetic strains (A and B). In this experiment, the levels of MatAb against Newcastle disease virus were assessed by enzyme-linked immunosorbent assays in serum samples taken of pedigreed chicken progeny from hatching to 13 d of age. Chickens were fed corn-and wheat-based diets, as were their parents. The breeder feeding program and diet type altered the Newcastle disease virus MatAb found in progeny at hatching and affected how long these antibodies were maintained in circulation. Bursal follicle size at hatching was influenced by an interaction among all factors evaluated. Percentage of white pulp in the spleen was affected mainly by genetic strain and diet type, but responses varied according to the breeder feeding program. It was concluded that breeder feeding programs influence MatAb transfer and half-life, and may also affect the early development of lymphoid tissues.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)