255 resultados para Transgenic soybean
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi validar, pela técnica de PCR quantitativo em tempo real (RT-qPCR) genes para serem utilizados como referência em estudos de expressão gênica em soja, em ensaios de estresse hídrico. Foram avaliados quatro genes comumente utilizados em soja: Gmβ-actin, GmGAPDH, GmLectin e GmRNAr18S. O RNA total foi extraído de seis amostras: três amostras de raízes em sistema de hidroponia com diferentes intensidades de déficit hídrico (0, 25, 50, 75 e 100 minutos de estresse hídrico), e três amostras de folhas de plantas cultivadas em areia com diferentes umidades do solo (15, 5 e 2,5% de umidade gravimétrica). Os dados brutos do intervalo cycle threshold (Ct) foram analisados, e a eficiência de cada iniciador foi calculada para uma analise da Ct entre as diferentes amostras. A aplicação do programa GeNorm foi utilizada para a avaliação dos melhores genes de referência, de acordo com a estabilidade. O GmGAPDH foi o gene menos estável, com o maior valor médio de estabilidade de expressão (M), e os genes mais estáveis, com menor valor de M, foram o Gmβ-actin e GmRNAr18S, tanto nas amostras de raízes como nas de folhas. Estes genes podem ser usados em RT-qPCR como gens de referência para análises de expressão gênica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil and subsoil aluminium toxicity has been one of the main limiting factors for soybean and wheat yields in tropical soils. Usually liming is the most effective way to deal with soil acidity and Al toxicity, but in no-till systems the soil is not disturbed making it impossible to incorporate lime in the arable layer, and lime has been usually applied on the soil surface. In this paper soybean and wheat responses to lime applied on the soil surface and/or incorporated in the soil arable layer were evaluated during the transition from conventional tillage to a no-till system. The experiment was conducted for 3 years in Parana, Brazil, using a wheat-soybean rotation. Lime rates ranging from 0.0 to 9.0 t ha(-1) were incorporated down to 20 cm and 4.5 t ha(-1) were spread or not on the soil surface. Soil samples were taken down to 60 cm, 39 months after the first lime application. Soil chemical characteristics were affected by lime application down to 60 cm deep in the profile. Soybean responded to lime irrespective of application method, but the highest accumulated yield was obtained when lime was incorporated into the arable layer. For wheat, the more sensitive the cultivar, the greater was the response to lime. During the introduction of a no-till system, lime must be incorporated into the arable layer when the wheat cultivar is Al-sensitive. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This experiment was conducted to compare the performance of 1260 chicks fed diets containing soybean meal plus soybean oil (SBM + oil), whole extruded soybean (ESB) and whole steam toasted soybean (TSB), with two protein levels. A complete randomized design was used, with six treatments and 3 replicates of each sex. The treatments consisted of a factorial arrangement 2 x 3 x 2 to test three soybean types (SBM + oil, ESB and TSB), two protein levels (optimum and suboptimum) and two sexes. From 1 to 49 days of age, the tested soybean types did not affect the diet intake. However, ESB provided higher weight gain in relation to SBM + oil, but it did not differ from TSB. The feed:gain ratio obtained with ESB and TSB was better in relation to SBM + oil. There was no difference between the nutritional value of TSB and ESB, because they provided similar performance to the birds.
Resumo:
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhao, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhao States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.
Resumo:
Sowing is a critical time in the cycle of a crop and the seeds are frequently exposed to adverse conditions that may compromise the establishment of seedlings in the field. on this basis, the objective of the present study was to determine the effect of types of environmental stress on the emergence of sunflower, maize and soybean seeds with different levels of vigor. High vigor seeds were artificially aged in order to obtain medium and low vigor seeds and then they were sown in clay soil in plastic boxes and submitted to the following types of environmental stress during the germination process : 1) high temperature (35degreesC), 2) low temperature (15 or 18degreesC), 3) water excess (Psi > -0.0001 MPa), 4) water deficiency (Psi approximately equal to -1.1; -1.2 and -0.6 MPa for sunflower, maize and soybean, respectively), 5) sowing at a depth of 7 cm and 6) pathogenic infection of sunflower seeds with Alternaria helianthi, of maize seeds with Fusarium moniliforme and of soybean seeds with Colletotrichum dematium, var. truncata. The results were compared to those obtained with controls sown under optimal condition. It was concluded that: 1) the effect of seed vigor on emergence depends on the type of enviromental stress to which the seeds are exposed, 2) the stress to which the the seeds demonstrated highest sensitivity varied with species and 3) high temperature stress was the one that most impaired the emergence of the three species.
Resumo:
The objective was to determine the effect of a mouse metallothionein/bovine growth hormone transgene on resting metabolic rate (RMR), cold-induced thermogenesis, and beta-agonist stimulated nonshivering thermogenesis in mice. Non-transgenic littermates were used as controls. Open-circuit indirect calorimetry was used to assess RMR and cold-induced thermogenesis in 64 mice. Air temperature in the chamber was set at 31 degrees C for RMR and was decreased to 28, 25, 21, or 17 degrees C to determine cold-induced thermogenesis. Response to the beta-agonist isoproterenol was evaluated by monitoring changes in colonic temperature of 34 mice upon injection of the drug or saline. Despite the fact that RMR tended to be lower in transgenics than in nontransgenics, at 31 degrees C transgenic mice were able to regulate colonic temperature at the same level as nontransgenics, but colonic temperature decreased in transgenics relative to nontransgenics as air temperature was reduced. For each degree decrease in air temperature between 31 and 17 degrees C, nontransgenic mice increased heat production by 1.03 +/- .10 watt/kg, whereas transgenic mice increased it by only .56 +/- .08 watt/kg, indicating that the thermogenic response of transgenics to cold was inferior. The magnitude of the maximal increase in colonic temperature after isoproterenol injection was similar for both groups, but the response was slower in transgenics. We suggest that lean body mass and substrate availability for shivering thermogenesis are reduced in transgenics relative to total body weight, and that they allow colonic temperature to decrease to conserve energy.
Resumo:
The present work studies Ca, B and Zn omission on the development of soybean plants (Glycine max (L.) Merrill cv Santa Rosa). The experiment was carried out as hydroponic culture, viith complete Hoagland & Arnon nutrient solution nr. 2 (C), lacking calcium (-Ca), lacking boron (-B) or lacking zinc (-Zn), a total of 4 treatments. Seven samplings were made to determine: total dry matter (g), root dry matter (g), stem dry matter (g) and leaf dry matter (g). Results showed that Ca and B omissions decreased dry weight. Lack of Zn did not affect dry weight.