119 resultados para TIN OXIDE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabrication of optoelectronic devices requires the employment of at least one transparent electrode. Usually, commercially transparent electrodes have been made by deposition of indium tin oxide (ITO) films by RF-Sputtering technique. These commercial electrodes have sheet resistance of about 100 Ω/sq and optical transmittance of 77% at the wavelength of 550 nm. The poly(3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) is an alternative material to fabricate transparent electrodes due to its high conductivity (about 600 S/cm) and solubility in water. Soluble conductive materials exhibits advantages for processing of electrode layers, however there is a disadvantage during devices fabrication once materials with the same solvent of the electrode material cannot be coated one over the other. Alternatively, organic/Silica hybrid materials prepared by sol-gel process allow producing bulks and films with high chemical durability. In order to obtain transparent electrodes with high chemical durability, we introduced a blended material comprising the high UV-VIS transparency of organic/Silica sol-gel material and a high conductivity polymer PEDOT:PSS. The organic/Silica sol was obtained using two different molar concentrations (1:1 and 4:1), of tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTS). Amounts of PEDOT:PSS solutions were added to the sol material, resulting in different weight fractions of sol and polymer. G:T/P:P were deposit onto glass substrates by spray-coating. In order to perform electrical characterization of the blended material, gold electrodes were thermally evaporated onto the films. The electrical characterization was performed using a Keithley 2410 source/meter unity and the optical characterization, using a Cary50 UV-Vis spectrophotometer. The absorption coefficient and electric conductivity of the different compositions blends, as function of the PEDOT:PSS concentration, were...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work aims to study one-dimensional nanomaterials semiconductors grown via by phase systems Grande oxides Technological Interest for applications in gas sensors. The Used material was tin oxide (SnO2) for their functional properties, and the grow method was the Polymeric Precursors. The films grown were the nanomaterials about substrates of alumina, deposited via spin coating technique, followed by heat treatment at 300C for 1 hour and 650C for 2 hours. Later the films of Performance sensors (sensitivity, speed response, selectivity, and stability) will be in avaliated in a hermetic chamber with controlled atmosphere and temperature. The synthesized materials were its structural and morphological properties characterized in atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (not have this result with Me). We sought to investigate one influence of different conditions for obtaining films (Variation Layers number) in structural and microstructural properties of semiconductors oxides. The synthesis method proved very effective, generating films with micro definitely, uniformity of the nanoparticles and hum high level of porosity, what makes the material of a viable final paragraph applicability

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This communication discusses the formation of doped nanobelts produced by a simple route. Tin-doped indium oxide (ITO) nanobelts were obtained by a carbothermal reduction method. The nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and wavelength-dispersive X-ray spectroscopy (WDX). The results show that the nanobelts have a cubic structure, are single crystalline and doped with tin and grow in the [400] direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas sensors and should also provide varistor properties modifying the TiO2 surface. Therefore, a theoretical investigation has been carried out characterizing the effect of SnO2 on TiO2 addition on the electronic structure by means of ab initio SCF-LCAO calculations using all electrons. In order to take into account the finite size of the cluster, we have used the point charge model for the (TiO2)(15) cluster to study the effect on electronic structure of doping the TiO2 (110) Surface. The contracted basis set for titanium (4322/42/3), oxygen (33/3) and tin (43333/4333/43) atoms were used. The charge distributions, dipole moments, and density of states of doping TiO2 and vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the development of an analytical procedure for on-line tin determination using thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Two tubes were evaluated as atomization cells: a metallic tube (Ni-Cr, principal components composition: 73.95% Ni and 16.05% Cr) and a ceramic tube (99.8% Al2O3). The use of air as the carrier was made by employing a Rheodyne valve to inject the samples, allowing an analytical frequency of 90 h(-1) and avoiding sample dispersion. The carrier flow rate (air), sample volume injected, and acid concentration (HCl) were evaluated for the optimization of the TS-FF-AAS system. The sensitivity for 50 mL of analytical solution with TS-FF-AAS was 2 and 5 times higher (to metallic and ceramic tube, respectively) than using an acetylene-nitrous oxide flame with pneumatic aspiration (requiring a sample volume of approximately 20 times higher.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work presents results on natural sintering of tin dioxide ceramics, prepared by a chemical route or by conventional mixing and containing manganese (X-Mn = Mn/(Mn + Sn)(atomic) with 0 less than or equal to X(Mn)less than or equal to 0.15). This cation, which is practically insoluble in SnO2 network, stays at the grain surface. During thermal treatment (500 degrees C less than or equal to T-s less than or equal to 1400 degrees C), as long as the manganese surface concentration is lower than a critical value, equal to 5.10(-6) mol m(-2), no densification takes place. As soon as this value is reached, densification and grain growth occur simultaneously. The shrinkage kinetics is fast and high rho/rho(t) values can be obtained (for example. rho/rho(t)=0.95 for T-s=1300 degrees C and X-Mn=0.004). The dependence between manganese content, manganese distribution, grain size and sintering behaviour is also discussed. (C) 1998 Published by Elsevier B.V. Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behaviour of tin in de-aerated sodium perchlorate was studied using potentiodynamic and potentiostatic techniques. Tin behaviour in sodium perchlorate has been complicated unexpectedly by the reduction of the perchlorate anion. It is shown that the reduction process takes place within a potential region comprising the negative side of the double layer region and the positive side of the hydrogen region (-0.7 less than or equal to E less than or equal to -1.3 V). The presence of oxide on the electrode surface favours the reduction reaction, which may occur in two steps: the formation of basic tin(II) chloride followed by its reduction, producing chloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin on the oxide form, alone or doped with others metals, has been extensively used as gas sensor, thus, this work reports on the preparation and kinetic parameters regarding the thermal decomposition of Sn(II)-ethylenediaminetetraacetate as precursor to SnO2. Thus, the acquaintance with the kinetic model regarding the thermal decomposition of the tin complex may leave the door open to foresee, whether it is possible to get thin film of SnO2 using Sn(II)-EDTA as precursor besides the influence of dopants added.The Sn(II)-EDTA soluble complex was prepared in aqueous medium by adding of tin(II) chloride acid solution to equimolar amount of ammonium salt from EDTA under N-2 atmosphere and temperature of 50degreesC arising the pH similar to 4. The compound was crystallized in ethanol at low-temperature and filtered to eliminate the chloride ions, obtaining the heptacoordinated chelate with the composition H2SnH2O(CH2N(CH2COO)(2))(2).0.5H(2)O.Results from TG, DTG and DSC curves under inert and oxidizing atmospheres indicate the presence of water coordinated to the metal and that the ethylenediamine fraction is thermally more stable than carboxylate groups. The final residue from thermal decomposition was the SnO2 characterized by X-ray as a tetragonal rutile phase.Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E-a = 183.7 +/- 12.7 and 218.9 +/- 2.1 kJ mol(-1), and pre-exponential factor: log A = 18.85 +/- 0.27 and 19.10 +/- 0.27 min(-1), at 95% confidence level, could be obtained, regarding the loss of coordinated water and thermal decomposition of the carboxylate groups, respectively. The E-a and logA also could be obtained applying isoconventional Wall-Flynn method on the TG curves.From E-a and log A values, Dollimore and Malek procedures could be applied suggesting R3 (contracting volume) and SB (two-parameter model) as the kinetic model to the loss of coordinated water (177-244degreesC) and thermal decomposition of the carboxylate groups (283-315degreesC), respectively. Simulated and experimental normalized DTG and DSC curves besides analysis of residuals check these kinetic models. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltammetry has been employed to study the influence of systematic additions of citric acid on the E-I curves of Tin in 0.5 M NaClO4, in order to verify the film growth in the presence of the organic acid and the inhibition of the pitting corrosion of the metal. The minimum concentration of the organic acid needed to change the GI curves is 10(-2) M, in the pH range 1.0-4.0. At pH 3.0 and 4.0, the scan rate dependence on current density, in the potential region of formation and reduction of the film, showed that in a first stage adsorption occurs. In a second stage, the v(1/2) dependence found can he explained by ohmic resistance control. The formation of tin/citric acid complexes, 10(-2) M, is suggested. The pitting inhibition may be due to the formation of a mixed layer of tin in citric acid concentrations higher than 10(-2) oxide and tin citrate complexes on the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.