145 resultados para Stream sediments
Resumo:
AIM: In this study, we evaluated and compared community attributes from a tropical deforested stream, located in a pasture area, in a period before (PRED I) and three times after (POSD I, II, and III) a flash flood, in order to investigate the existence of temporal modifications in community structure that suggests return to conditions previous to the flash flood. METHODS: Biota samples included algae, macrophytes, macroinvertebrates, and fish assemblages. Changes in stream physical structure we also evaluated. Similarity of the aquatic biota between pre and post-disturbance periods was examined by exploratory ordination, known as Non-Metric Multidimensional Scaling associated with Cluster Analysis, using quantitative and presence/absence Bray-Curtis similarity coefficients. Presence and absence data were used for multivariate correlation analysis (Relate Analysis) in order to investigate taxonomic composition similarity of biota between pre and post-disturbance periods. RESULTS: Our results evidenced channel simplification and an expressive decrease in richness and abundance of all taxa right after the flood, followed by subsequent increases of these parameters in the next three samples, indicating trends towards stream community recovery. Bray-Curtis similarity coefficients evidenced a greater community structure disparity among the period right after the flood and the subsequent ones. Multivariate correlation analysis evidenced a greater correlation between macroinvertebrates and algae/macrophytes, demonstrating the narrow relation between their recolonization dynamics. CONCLUSIONS: Despite overall community structure tended to return to previous conditions, recolonization after the flood was much slower than that reported in literature. Finally, the remarkably high flood impact along with the slow recolonization could be a result of the historical presence of anthropic impacts in the region, such as siltation, riparian forest complete depletion, and habitat simplification, which magnified the effects of a natural disturbance.
Resumo:
Em ambientes de riacho, fatores relacionados à estrutura dos habitats e limnologia interagem regulando os padrões de transferência de energia e matéria, afetando a composição da comunidade de peixes. Em bacias costeiras do sudeste do Brasil as características limnológicas e estrutura dos habitats diferem entre riachos de águas claras e pretas. Os primeiros são compostos por uma variedade de tipos de substrato, possuem velocidades de corrente mais elevadas e baixa condutividade, enquanto os últimos apresentam substrato arenoso, baixas velocidades de corrente e águas escuras e ácidas. Neste trabalho analisamos a importância relativa da estrutura dos habitats e das variáveis limnológicas como preditores dos padrões de composição em comunidades de peixes de riachos. Oito riachos de primeira a terceira ordem foram amostrados na planície costeira da bacia do rio Itanhaém. Capturamos 34 espécies e verificamos que a composição das comunidades foi influenciada por fatores estruturais e limnológicos, sendo os primeiros mais importantes. Uma fração de variação que não pode ser totalmente decomposta, deve-se à influência conjunta da limnologia e estrutura dos habitats. Algumas das espécies restritas aos riachos de águas pretas provavelmente apresentam adaptações fisiológicas e comportamentais para lidar com os baixos níveis de pH. Quando foram examinados somente os riachos de águas claras, toda a variação explicada na composição da comunidade de peixes foi atribuída aos fatores estruturais, devido a preferências específicas por diferentes características de hábitats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.
Resumo:
Beta diversity, the spatial or temporal variability of species composition, is a key concept in community ecology. However, our ability to predict the relative importance of the main drivers of beta diversity (e. g., environmental heterogeneity, dispersal limitation, and environmental productivity) remains limited. Using a comprehensive data set on stream invertebrate assemblages across the continental United States, we found a hump-shaped relationship between beta diversity and within-ecoregion nutrient concentrations. Within-ecoregion compositional dissimilarity matrices were mainly related to environmental distances in most of the 30 ecoregions analyzed, suggesting a stronger role for species-sorting than for spatial processes. The strength of these relationships varied considerably among ecoregions, but they were unrelated to within-ecoregion environmental heterogeneity or spatial extent. Instead, we detected a negative correlation between the strength of species sorting and nutrient concentrations. We suggest that eutrophication is a major mechanism disassembling invertebrate assemblages in streams at a continental scale.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)