277 resultados para Specific soil management
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil tillage may influence CO2 emissions in agricultural systems. Agricultural soils are managed in several ways in Brazil, ranging from no tillage to intensive land preparation. The objective of this study was to determine the effect of common soil tillage treatments (disk harrow, reversible disk plow, rotary tiller and chisel plow tillage systems) on the intermediate CO2 emissions of a dark red latosol, located in southern Brazil. Different tillage systems produced significant differences in the CO2 emissions, and the results indicate that the chisel plow produced the highest soil carbon loss during the 15 days period after tillage treatments were performed. Emissions to the atmosphere increased as much as 74 g CO2 m(-2), at the end of a 2-week period, in the plot where the chisel plow treatment was applied, in comparison to the non-disturbed plot. The results indicate that the total increase on the intermediate term soil CO2 emissions due to tillage treatments in southern Brazil is comparable to that reported for the more humid and cooler regions. (C) 2001 Elsevier B.V. B.V All rights reserved.
Resumo:
The purpose of this work was to assess the effects of soil preparation methods (with or without subsoiling) on physical properties of a cerrado soil cropped to corn during the, 1986/87 season, in the Selviria county (Mato Grosso do Sul, Brazil). Also, the objective of this was to check the changes in the soil (dark red latosol-Acrustox) caused by the preparation after nine years of cultivation in comparison with natural state. The experiment consisted of six soil preparation systems: conventional, superpreparation, reversed, revolving hoe, reduced and no-tillage. Along with these systems subsoiling was also tested. The reversed system showed the best com grain yield. Subsoiling only presented positive results in productivity with the no-tillage system. All the preparation system tested degraded the physical properties in comparison with the natural soil.
Resumo:
Organic residues may cause major health and environmental problems. This is the case in our study area, where more than 10 billion L per year of residential and industrial waste are produced. Land application of biosolids can be an economical solution by recycling waste and can provide valuable fertilizer if used correctly. The aim of this work was to study the effect of biosolids on the chemical properties of an Oxisol. The experiment was located at Ilha Solteira northwest of São Paulo State, Brazil. The soil was cropped to Sorghum bicolor.The field experimental design consisted of random blocks with six treatments and four replications of each treatment. Biosolids were surface applied to four treatments at rates of 5, 10, 20, and 40 Mg ha(-1) on a dry matter basis; in addition, a treatment with mineral fertilizer and a control were included. One year after biosolids application, soil samples were taken at 0-10, 10-20, and 20-40 cm. Organic matter content (Walkley-Black) and pH (CaCl2) were routinely determined. Cation exchange capacity, exchangeable bases (Ca, Mg, K), and P were determined by exchange resin extraction. No significant differences in any of the analyzed properties were found below the 20 cm depth. Extractable phosphorus (P) and potassium (K) increased with increasing biosolids rate in the top 20 cm, whereas calcium (Ca) and (Ma) magnesium content were not significantly influenced by biosolids. Soil pH decreased with increasing biosolids application. The sewage sludge application did not influence the sorghum production in the first year of culture, under unfavorable soil moisture conditions, but it influenced the dry matter.
Resumo:
The study of the spatial variability of soil attributes under different crop helps the study of changes due the management. This research was carried out to determine spatial variability the particle-size distribution, using of the classic statistic and geostatistics, of a soil cultivated with pasture and native vegetation. Soil samples were collected in the layer 0-0.20m, at the crossing points of a regular grid with 10m-intervals, summing up 64 samples points in each area. In the pasture area the fractions of coarse and total sand presented larger mean values in relation to the native vegetation, and negative correlation with the altitude of the points samples in the two areas. All of the fractions presented moderate to high spatial dependence in the two areas and with the defined still, with exception of the fine sand and the silt in the pasture. Much of this variability occurs as a function of water erosion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Inadequate vegetation and soil management leads to physical changes that affect aquifer recharge. The Araripe Plateau feeds an elevated number of springs on its northern slope; however, there are indications that their yield is decreasing. Through this research, it was studied the infiltration capacity of soils under different types of management. Soil samples from 21 sites were grouped into four groups. Group 1 represents areas of preserved vegetation, the others, anthropized ones. It was observed that soil moisture and infiltration capacity are linearly well correlated with organic matter; mean soil moisture during the dry season was significantly higher for Group 1 than for the other groups, even during the rainy season and anthropized areas show low organic matter contents, soil moisture, and infiltration capacity, indicating modifications in the soil's structure that reduce aquifer recharge.
Resumo:
Organic carbon is a major component of soil organic matter and its stock is influenced by the management system adopted. This study aimed to examine the effects of cropping systems and nutrient sources (mineral and organic) on the concentrations and storage of soil organic carbon in no-tillage system. The experiment was carried out in Mercedes, Parana, Brazil, in an Nitossolo Vermelho (Alfisol) from October 2007 to September 2009. The treatments consisted of four crop succession systems: (1) soybean/wheat/corn/wheat; (2) soybean/black oat/corn/black oat, (3) soybean/radish/corn/radish and (4) soybean/common vetch/corn/common vetch and by two sources of nutrients (mineral and organic), arranged in a to split plot randomized block design with four replications. Soil samples were collected in layers of 0.0-0.05, 0.05-0.10, 0.10-0.20 and 0.20 to 0.40 m deep in the first and the second years of cultivation. Different cropping systems does not affect the content and the stock of soil organic carbon in the first two years of adoption of the systems. The organic fertilization with manure increased soil organic carbon stock, with an annual contribution of C, layer 0.0 to 0.20 m, 1.15 Mg ha(-1) yr(-1). Cropping systems fertilized with mineral fertilizers provide the greatest losses of soil organic carbon, resulting in negative balance of C in soil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study presents the results obtained in a field experiment carried out at Glicério, Northwest of São Paulo state, Brazil, whose objective was to analyze changes of selected soil physical properties and water infiltration rates on a Yellow-Red Latosol, under three different management conditions. The experimental design was arranged as completely randomized split-block with twelve treatments, which corresponded to four depths (0-0.05 m; 0.05-0.10 m; 0.10-0.20 m and 0.20-0.40 m) and three conditions of soil use and management with four replications. The soil surface conditions were: conventional tillage (one disking with moulboard plus two levelling passes with harrow), nine months before starting filed experiences; recent conventional tillage (also one disking with moulboard plus two levelling passes with harrow) and native forest. The conventional tillage areas were cropped for about fifteen years with annual cultures. The considered soil general physical properties were: macroporosity, microporosity, total porosity, bulk density, soil moisture and penetration resistance and, in addition; soil water infiltration rates were also recorded. According to our results, differences on general soil physical properties and infiltration rates appeared when both tilled sub-treatments and native forest were compared. Both, plots recently prepared by conventional tillage and those prepared by tillage but left nine months in rest, presented a statistically significant decrease of constant (final) water infiltration rates of 92.72% and 91.91% when compared with native forest plots.
Resumo:
In the Research and Teaching Farm of the State University of São Paulo (UNESP) - Campus of Ilha Solteira, located in Selviria, in Mato Grosso do Sul State, a study was conducted with the objective of investigating the resistance to penetration of a highly degraded soil due to construction of a Hydroelectric Power Plant. The experimental design was a completely randomized, with five treatments and five replications. The treatments were constituted of the following uses and managements: area in advanced state of degradation; area under regeneration cultivated 13 years with Pinus; area under regeneration cultivated 11 years with green manure and pasture; degraded area with natural regeneration; and area with natural vegetation (savanna). The system where the area was under regeneration with Pinus cultivation and the niches with natural regeneration were the closest to natural condition (savanna). Except for the natural area (savanna), all others presented a higher resistance to penetration in the layer of 0.20-0.40 m, which represents serious limitations for growth of plant roots.
Resumo:
Soil management measures that increase the efficiency of organic matter cycling and maintain favorable soil structure are needed for improving soil quality. On the other hand, soil structure degradation due to inadequate soil management systems is widespread. Among the indicators of soil physical quality, saturated hydraulic conductivity and penetration resistance are thought to be sensitive to soil management system. The aim of this work was to study the influence of soil tillage system and organic fertilization on selected soil physical properties after the first year of treatment. The field work was conducted in Selviria, MS, Brazil on an Oxisol. The experimental design was randomized complete blocks with split-plots, with 12 treatments and 4 repetitions. Tillage treatments included conventional ploughing (CT) and direct drilling (DD). Fertilizer treatments were: 1) manure, 2) manure plus mineral, 3) traditional mineral 4) plant residues of Crotalaria juncea, 5) plant residues of Pennisetum americanum and 6) control plot. The plots were cropped to bean in winter and to cotton in summer, and both cultures were irrigated. After one year no significant differences between treatments in mechanical resistance and porosity were found. However, saturated hydraulic conductivity and infiltration were higher in the conventional tillage treatment at the 0.00-0.10 m depth. Moreover, an improvement in soil physical condition by organic fertilizers was shown.
Resumo:
The conventional system for soil management and preparation has the intensive mechanization as its basic principle and that changes soil properties, especially physical ones, faster and significantly. This study aimed to obtain and compare physical properties such as distribution of particle sizes, density, distribution of pore sizes, curves of water retention and degradation index of a Red Latosol, under intensive cultivation and no-cultivation for six years. Soil samples were collected at depths of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 m. There was a clay increment as a result of cultivated soil increase. The no-till soil density decreased as depth increased; however, in the arable layer (0.3 m) of the cultivated soil, the opposite was verified. The largest volume of pores was verified in the cultivated soil, especially in the superficial layers. In the smallest applied tension (0.001 MPa), the cultivated soil retained more water; however, starting from 0.033 MPa, the highest humidity values occurred in the no-till soil. The highest degradation index was observed at a depth of 0.1 m in no-till soil. However, that value was superior (0.020) to what is physically considered very poor soil.
Resumo:
The aim of this work was to evaluate the effect of a millet-soybean rotation, during the implantation phase of no-tillage system on the physical properties of a Nitossolo Vermelho distroférrico and the dry mass production of millet and the productivity of soybean. The experimental design used was a randomized blocks, in a split splot arrangement, with four replications. The parcels was constituted by three sowings (E1, E2 and E3) and the subparcels was constituted by harvests, where each harvest handling was: M1 - harvest each blooming and covering withdrawal; M2 - harvest each blooming and covering permanency; M3 - only in the first harvest on blooming and covering withdrawal; M4 - only in the first harvest on blooming and covering permanency, and M5-free growing, with no harvest. Samples were collected from three soil layers: 0-0,05, 0,05-0,10 and 0,10-0,20 m. The E2 showed smaller values of soil density and larger values of total porosity. The E3 resulted in smaller values of flocculation degree and mean weight diameter of the aggregates. The E3 showed smaller production of dry mass.