108 resultados para Solvent regeneration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomaterials such as membrane barriers and/or bone grafts are often used to enhance periapical new bone formation. A combination of apical surgery and these biomaterials is one of the latest treatment options for avoiding tooth extraction. In case of periapical lesions, guided tissue regeneration (GTR) is attempted to improve the self-regenerative healing process by excluding undesired proliferation of the gingival connective tissue or migration of the oral epithelial cells into osseous defects. In many cases, GTR is necessary for achieving periodontal tissue healing. This report describes the healing process after surgery in a challenging case with a long-term followup. In this case report, endodontic surgery was followed by retrograde sealing with mineral trioxide aggregate (MTA) in the maxillary right central incisor and left lateral incisor. Apicectomy was performed in the maxillary left central incisor and a 1-mm filling was removed. The bone defect was filled with an anorganic bone graft and covered with a decalcified cortical osseous membrane. No intraoperative or postoperative complications were observed. After 13 years of follow-up, the patient showed no clinical signs or symptoms associated with the lesion and radiographic examination showed progressive resolution of radiolucency. In conclusion, the combination of apical surgery and regenerative techniques can successfully help the treatment of periapical lesions of endodontic origin and is suitable for the management of challenging cases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is developed for an irreversible Brayton cycle with regeneration, inter-cooling and reheating. The irreversibility are from the thermal resistance in the heat exchangers, the pressure drops in pipes, the non-isentropic behavior in the adiabatic expansions and compressions and the heat leakage to the cold source. The cycle is optimized by maximizing the ecological function, which is achieved by the search for optimal values for the temperatures of the cycle and for the pressure ratios of the first stage compression and the first stage expansion. The advantages of using the regenerator, intercooler and reheater are presented by comparison with cycles that do not incorporate one or more of these processes. Optimization results are compared with those obtained by maximizing the power output and it is concluded that the point of maximum ecological function has major advantages with respect to the entropy generation rate and the thermal efficiency, at the cost of a small loss in power.