275 resultados para Sol-gel and template


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the effect of organic (Tiron (R)) and inorganic (Mn(11)) additives on the low temperature (< 600 degrees C) densification of the sol-gel dip-coated SnO2 films. The structural and compositional properties of the samples were investigated by X-ray reflectometry (XRR), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The results suggest that the replacement of hydroxyl groups at the particle surface by Tiron (R) reduces the level of agglomeration of the sol, increasing the particles packing and the apparent density of the coatings. Undoped and Mn-doped films drawn from a Tiron (R) containing suspension show after firing at 500 degrees C a porosity reduction of 12 and 8.6%, respectively. The porosity decrease is less pronounced (4.3%) for the film without additives. Both XAS and XPS data show the presence of trivalent manganese. The formation of a non-homogeneous solid solution characterised by the presence of Mn(111) replacing tin atom near to the crystallite surface was evidenced by XAS. Additionally, XPS results reveal the presence of metallic Sn at the surface of films containing Tirono. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the sol-gel process was used to prepare SnO2 supported membranes with an average pore size of 2.5 nm. The effects of salt concentration (NaCl or CaCl2) and of the pH of the aqueous solutions used on the flux and selectivity through the SnO2 membrane were analyzed by permeation experiments and the results interpreted taking account of the zeta potential values determined from the electrophoretic mobility of the SnO2 powder aqueous dispersion. The results show that the ion flux (Na+, Ca2+ and Cl-) throughout the membrane is determined by the electrostatic repulsion among these species and the surface charge at the tin oxide-solution interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an unprecedent thermo-reversible sol-gel transition for titania nanoparticles dispersed in a solution of p-toluene sulfonic acid (PTSH) in isopropanol is reported. The sol formed by the thermo-hydrolysis at 60 degrees C of titanium tetraisopropoxide (Ti((OPr)-Pr-i)(4)) reversibly changes into a turbid gel upon cooling to room temperature. Turbidimetric measurements performed for samples containing different nominal acidity ratios (A = [PTSH]/[Ti]) have evidenced that the gel transformation temperature increases from 20 to 35 degrees C as the [PTSH]/[Ti] ratio increases from 0.2 to 2.0. SAXS results indicate that the thermo-reversible gelation is associated to a reversible aggregation of a monodisperse set of titania nanoparticles with average gyration radius of approximate to 2 nm. From the different PTSH species evidenced by Raman spectroscopy and TG/DTA of dried gels we proposed that the then-no-reversible gelation in this systems is induced by the formation of a supramolecular network, in which the protonated surface of nanoparticles is interconnected through cooperative hydrogen bonds between -SO3 groups of p-toluene sulfonic acid. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsupported SnO2 membranes were prepared by sol-gel process and characterized by N2 adsorption-desorption isotherms and X-ray diffraction. Results show that the texture of dried samples does not change appreciably with the concentration of electrolyte. All of the pore size range used in ultrafiltration process was screened using sintering temperature between 300 and 700°C. © 1994 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution during sintering of compacted SnO2 sol-gel powder was investigated using nitrogen adsorption isotherm analysis. Results show that for sintering temperatures up to 400°C the samples have a fractal pore size distribution. As the sintering temperature increases, a structural rearragement occurs, allowing an increase of the efficiency of particle packing and the reduction of fractality. Above 400°C, the pore size growth associated with grain coalescence is the main structural change observed as the sintering temperature increases. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (∼34 Å) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300°C. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic and structural properties of sol-gel derived organic/inorganic nanocomposites doped with Fe(II), Fe(III), Nd(III) and Eu (III) ions are discussed. These hybrids consist of poly(oxyethylene)-based chains grafted onto siloxane nanodomains by urea cross-linkages. Small angle X-ray scattering data show the presence of spatial correlations of siloxane domains embedded in the polymer matrix. The magnetic properties of rare-earth doped samples are determined by single ion crystal-field-splitted levels (Eu3+ J=0; Nd3+ J=9/2) and the small thermal irreversibility is mainly associated to structural effects. Fe2+ -doped samples behave as simple paramagnet with residual antiferromagnetic interactions. Fe3+-doped hybrids are much more complex, with magnetic hysterisis, exchange anisotropy and thermal irreversibility at low temperatures. Néel temperatures increase up to 14K for the highest (∼5.5%) Fe3+ mass concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnO2 deposited by sol-gel is a polycrystalline film with small grain size. Oxygen present at a less grain boundary traps electrons and then the depletion layer around the potential barrier of the grain boundary becomes wider, comparable to the grain size. We have modeled the conductivity taking into account the trapped charge at the depletion layer of the grain boundary and other scattering mechanisms such as ionized impurity and polar optical. Experimental data of photoconductivity of SnO2 sol-gel films are simulated considering the dominant scattering at grain boundary and crystallite bulk. The fraction of trapped charge at the grain boundary depends on temperature and wavelength of irradiating light, being as high as 50% for illumination in the range 500-600 nm for SnO2-2%Nb as grown sample annealed in air to 550°C. This fraction can be quite reduced depending on exposure to light and annealing under different oxygen partial pressure conditions.