377 resultados para Screw Extrusion
Resumo:
The objectives of this study were, through a literature review, to point the differences between orbital implants and their advantages and disadvantages, to evaluate prosthesis motility after orbital implants are inserted, and to point the implant wrapping current risks. Sixty-seven articles were reviewed. Enucleation implants can be autoplastics or alloplastics and porous (including natural and synthetic hydroxyapatite [HA]) or nonporous (silicone). Hydroxyapatite is the most related in the literature, but it has disadvantages, too, that is, all orbital implants must be wrapped. Exposure of the porous orbital implant can be repaired using different materials, which include homologous tissue, as well as autogenous graft, xenograft, and synthetic material mesh. The most used materials are HA and porous polyethylene orbital implant. The HA implant is expensive and possibly subject corals to damage, different from porous polyethylene orbital implants. Porous implants show the best prosthesis motility and a minimum rate of implants extrusion. Implant wraps can facilitate smoother entry of the implant into the orbit and allow reattachment of extraocular muscles. They also serve as a barrier between the overlying soft tissue and the rough surface of the implant, protecting implants from exposure or erosion.
Resumo:
Purpose: This three-dimensional finite element analysis study evaluated the effect of different material combinations on stress distribution within metal-ceramic and all-ceramic single implant-supported prostheses. Materials and Methods: Three-dimensional finite element models reproducing a segment of the maxilla with a missing left first premolar were created. Five groups were established to represent different superstructure materials: GP, porcelain fused to gold alloy; GR, modified composite resin fused to gold alloy; TP, porcelain fused to titanium; TR, modified composite resin fused to titanium; and ZP, porcelain fused to zirconia. A 100-N vertical force was applied to the contact points of the crowns. All models were fixed in the superior region of bone tissue and in the mesial and distal faces of the maxilla section. Stress maps were generated by processing with finite element software. Results: Stress distribution and stress values of supporting bone were similar for the GP, GR, TP, and ZP models (1,574.3 MPa, 1,574.3 MPa, 1,574.3 MPa, and 1,574.2 MPa, respectively) and different for the TR model (1,838.3 MPa). The ZP model transferred less stress to the retention screw (785 MPa) than the other groups (939 MPa for GP, 961 MPa for GR, 1,010 MPa for TP, and 1,037 MPa for TR). Conclusion: The use of different materials to fabricate a superstructure for a single implant-supported prosthesis did not affect the stress distribution in the supporting bone. The retention screw received less stress when a combination of porcelain and zirconia was used. Int J Oral Maxillofac Implants 2011;26:1202-1209
Resumo:
The purposes of this study were to photoelastically measure the biomechanical behavior of 4 implants retaining different cantilevered bar mandibular overdenture designs and to compare a fixed partial denture (FPD). A photoelastic model of a human edentulous mandible was fabricated, which contained 4 screw-type implants (3.75 x 10 mm) embedded in the parasymphyseal area. An FPD and 3 overdenture designs with the following attachments were evaluated: 3 plastic Hader clips, 1 Hader clip with 2 posterior resilient cap attachments, and 3 ball/O-ring attachments. Vertical occlusal forces of 100 N were applied between the central incisor and unilaterally to the right and left second premolars and second molars. Stresses that developed in the supporting structure were monitored photoelastically and recorded photographically. The results showed that the anterior loading, the overdenture with 3 plastic Hader clips, displayed the largest stress concentration at the medium implant. With premolar loading, the FPD and overdenture with 3 plastic Hader clips displayed the highest stresses to the ipsilateral terminal implant. With molar loading, the overdenture with 3 ball/O-ring attachments displayed the most uniform stress distribution in the posterior edentulous ridge, with less overloading in the terminal implant. It was concluded that vertical forces applied to the bar-clip overdenture and FPD created immediate stress patterns of greater magnitude and concentration on the ipsilateral implants, whereas the ball/O-ring attachments transferred minimal stress to the implants. The increased cantilever in the FPD caused the highest stresses to the terminal implant.
Resumo:
Objective: The purpose of the present study was to evaluate the influence of radiation in osseointegrated dental implants installed in tibiae of rats.Material and methods: Screw-shaped implants (2.5 mm diameter by 3.5 mm length) were custom made from commercially pure titanium bars. Titanium implants were blasted and sterilized before implantation. Animals were divided into two groups of 12 animals each and the rats were not paired after the groups' formation. The experimental group (group 1) received external irradiation 4 weeks after surgery while in the control group (group 2) animals were kept free of radiation. The shear strength required to detach the implant from bone was measured by push-out testing and osseointegration was histologically evaluated.Results: Results showed that the compressive strength of irradiated implants (33.49 MPa) was significantly lower than the compressive strength of non-irradiated implants (48.05 MPa).Conclusions: We concluded that the mechanical strength bonding between implants and host tissues decreased after irradiation.
Resumo:
Purpose: Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Materials and Methods: Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 pm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 pm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 pm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. Results: The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. Conclusions: The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:788-796
Resumo:
Purpose: This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns.Materials and Methods: Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05).Results: Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P < 0.05).Conclusions: All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage. (Implant Dent 2012;21:46-50)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: The aim of this study was to evaluate the effect of mechanical cycling and different misfit levels on Vicker's microhardness of retention screws for single implant-supported prostheses.Materials and Methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n = 12). The crowns presented no misfit in group A (control group) and unilateral misfits of 50 mu m, 100 mu m, and 200 mu m in groups B, C, and D, respectively. The crowns were screwed to external hexagon implants with titanium retention screws (torque of 30 N/cm), and the sets were submitted to three different periods of mechanical cycling: 2 x 10(4), 5 x 10(4), and 1 x 10(6) cycles. Screw microhardness values were measured before and after each cycling period. Data were evaluated by two-way ANOVA and Tukey's test (p < 0.05).Results: Mechanical cycling statistically reduced microhardness values of retention screws regardless of cycling periods and groups. In groups A, B, and C, initial microhardness values were statistically different from final microhardness values (p < 0.05). There was no statistically significant difference for initial screw microhardness values (p > 0.05) among the groups; however, when the groups were compared after mechanical cycling, a statistically significant difference was observed between groups B and D (p < 0.05).Conclusions: Mechanical cycling reduced the Vicker's microhardness values of the retention screws of all groups. The crowns with the highest misfit level presented the highest Vicker's microhardness values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effect of unilateral misfit at different levels on a crown-implant-retention screw system of implant-supported crowns. Hexagon castable UCLA abutments were cast in Co-Cr alloy to fabricate 48 metallic crowns divided into four groups (n = 12). Group A: crowns did not present misfit; Groups B, C and D: crowns were fabricated with unilateral misfit of 50, 100, and 200 mu m, respectively. The crowns were attached by titanium retention screw with 30 N/cm to external hexagonal osseointegrated implants embedded in acrylic resin. After 2 min, the retention screw of each replica was submitted to detorque evaluation by an analogic torque gauge. Three retention screws were used to perform detorque evaluation at each replica and the procedure was repeated twice with each screw. Each group was submitted to 72 detorque measurements. Data were evaluated by ANOVA and Tukey test (P < 0.05). All groups exhibited significant decrease (P < 0.05) in preload and the lowest decrease occurred in Group A. Groups B, C, and D were statistically significant different from Group A (P < 0.05), but there was no statistically significant difference between Groups B and D (P > 0.05). Crowns with unilateral misfit presented higher preload decrease than crowns completely fitted to osseointegrated implants.
Resumo:
Este estudo determinou as características cefalométricas dos indivíduos portadores de Padrão Face Longa em comparação com indivíduos Padrão I. Um total de 73 telerradiografias em norma lateral, sendo 34 Padrão Face Longa e 39 Padrão I, foram selecionadas com base na morfologia facial, não considerando as relações oclusais e sagitais. Foram avaliados: padrão de crescimento facial, alturas faciais anteriores e posterior, relação maxilo-mandibular, além das relações dentárias com suas bases apicais. de uma forma geral, os indivíduos Padrão Face Longa apresentaram grandes desvios em relação aos indivíduos Padrão I, sendo a doença decorrente de um desequilíbrio entre os componentes verticais. Pôde-se observar que os valores das grandezas AFAT, AFAI, AFATperp, AFAIperp, 1-PP, 6-PP, 1-PM, SNB, ANB, ângulo goníaco, ângulo plano mandibular, além das proporções AFAI/AFAT e AFAIperp/AFATperp, estavam significantemente alterados para os indivíduos Padrão Face Longa. Com base nos resultados obtidos neste estudo, verificou-se que esses indivíduos caracterizavam-se pelo padrão de crescimento vertical e por um aumento da altura facial anterior inferior - conseqüentemente, da altura facial anterior total - estando a deformidade localizada abaixo do plano palatino. Foram observados ainda um retrognatismo maxilar e mandibular, além da presença de extrusão dentária anterior (superior e inferior) e póstero-superior, com os incisivos superiores bem posicionados em suas bases e os inferiores lingualizados.
Resumo:
OBJETIVO: avaliar o efeito da retração anterior sobre o ponto A sagital e verticalmente, bem como a correlação e a previsibilidade do comportamento dessas estruturas. METODOLOGIA: sessenta telerradiografias em norma lateral foram usadas, tomadas no início e no final do tratamento ortodôntico corretivo, a partir de 30 pacientes (22 feminino e 8 masculino) com idade entre 10 e 17 anos antes do tratamento, com má oclusão de Classe II, divisão 1 ou Classe I, que foram submetidos às extrações dos quatro primeiros pré-molares ou somente dois primeiros pré-molares superiores. Além das variáveis .1NA,1-NA, 1.PP e 1-A, mensurações lineares horizontais e verticais foram feitas em relação a uma linha de referência construída a partir da linha SN menos 7º e uma linha perpendicular a ela. Todos os dados foram mensurados duas vezes, e as médias foram submetidas ao teste t emparelhado, de correlação linear e de regressão. RESULTADOS: em média, o ponto A retraiu 0,71mm e movimentou para baixo 2,38mm, seguindo 1,03mm e 4,13mm de retração, respectivamente, do ápice radicular e da borda incisal, e 2,35mm de extrusão dentária. A retração do ponto A apresentou correlação positiva em relação ao ápice radicular (r = 0,75; alfa < 0,0001) e em relação à retração da borda incisal (r = 0,70; alfa < 0,0001), mostrando um comportamento ântero-posterior previsível. CONCLUSÕES: concluiu-se que o ponto A retraiu-se e movimentou-se para baixo seguindo o dente, e a retração do ponto A em relação aos incisivos foi previsível.
Resumo:
Neste artigo é descrito o caso clínico de um paciente adulto, sem crescimento, com má oclusão de Classe II, divisão 2, tratado com um splint maxilar modificado. Foi exercida força extra-bucal com direção de tração parietal com força de 400 gramas, com uso diário de 14 horas durante 1 ano. Com este aparelho removível corrigiu-se completamente a relação de Classe II dos molares e pré-molares, levando estes dentes à oclusão normal, não havendo extrusão dentária, mantendo constante o plano mandibular. Após a correção dos dentes posteriores com o splint maxilar modificado, utilizou-se aparelhagem fixa convencional para corrigir as inclinações dos dentes anteriores e finalizar o caso.