140 resultados para Poly(methylene blue)
Resumo:
Pododermatitis is currently one of most frequent and important clinical complications in seabirds kept in captivity or in rehabilitation centers. In this study, five Magellanic penguins with previous pododermatitis lesions on their footpad were treated with photodynamic therapy (PDT). All PDT treated lesions successfully regressed and no recurrence was observed during the 6-month follow-up period. PDT seems to be an inexpensive and effective alternative treatment for pododermatitis in Magellanic penguins encouraging further research on this topic. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Candida albicans is classified into different serotypes according to cell wall mannan composition and cell surface hydrophobicity. Since the effectiveness of photodynamic therapy (PDT) depends on the cell wall structure of microorganisms, the objective of this study was to compare the sensitivity of in vitro biofilms of C. albicans serotypes A and B to antimicrobial PDT. Reference strains of C. albicans serotype A (ATCC 36801) and serotype B (ATCC 36802) were used for the assays. A gallium-aluminum-arsenide laser (660 nm) was used as the light source and methylene blue (300 mu M) as the photosensitizer. After biofilm formation on the bottom of a 96-well microplate for 48 h, each Candida strain was submitted to assays: PDT consisting of laser and photosensitizer application (L + P+), laser application alone (L + P-), photosensitizer application alone (L-P+), and application of saline as control (L-P-). After treatment, biofilm cells were scraped off and transferred to tubes containing PBS. The content of the tubes was homogenized, diluted, and seeded onto Sabouraud agar plates to determine the number of colony-forming units (CFU/mL). The results were compared by analysis of variance and Tukey test (p < 0.05). The two strains studied were sensitive to PDT (L + P+), with a log reduction of 0.49 for serotype A and of 2.34 for serotype B. Laser application alone only reduced serotype B cells (0.53 log), and the use of the photosensitizer alone had no effect on the strains tested. It can be concluded that in vitro biofilms of C. albicans serotype B were more sensitive to PDT.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study sought to assess if discoloration of tooth structures occurs after photodynamic therapy (PDT) and to determine the efficacy of a protocol to remove the photosensitizers. Background data: PDT has been used in root canal treatment to enhance cleaning and disinfection of the root canal system. PDT uses a low power laser in association with a dye as a photosensitizer. Photosensitizers can induce staining of the dental structures, resulting in an unaesthetic appearance. Methods: Forty teeth were randomly divided into four groups according to the photosensitizer used and pre-irradiation time: 0.01% methylene blue for 5 min (MB5); 0.01% methylene blue for 10 min (MB 10); 0.01% toluidine blue for 5 min (TB5); and 0.01% toluidine blue for 10 min (TB 10). Specimens were irradiated with a 660 nm diode laser with a 300 mu m diameter optical fiber, at 40 mW power setting for 3 min. Immediately after, the photosensitizers were removed with Endo-PTC cream +2.5% sodium hypochlorite (NaOCl). The shade was measured by a Vita Easyshade spectrophotometer based on the CIELAB color system (L*a*b* values) at three different experimental times: before PDT (T0), immediately after PDT (T1), and after removal of the photosensitizer (T2). Results: The results showed a decrease in the averages of the L*a*b* coordinate values after PDT (T1) in all the groups, when compared with the number at T0, with a significant statistical difference in group MB10. After photosensitizer removal (T2), all the values of the coordinates increased with significant statistical differences (p < 0.05) between T1 and T2 in L* and a*. Conclusions: It can be concluded that both methylene blue and toluidine blue dyes cause tooth discoloration, and that Endo-PTC cream associated with 2.5% NaOCl effectively remove these dyes, regardless of the pre-irradiation time used for PDT.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study was intended to quantify the marginal leakage of three glass-ionomer-resin composite hybrid materials and compare it with the leakage exhibited by a glass-ionomer cement and a bonded resin composite system. Method and materials: Standardized Class V cavities were prepared on root surfaces of 105 extracted human teeth, randomly assigned to five groups of 21 each, and restored with either Ketac-Fil Aplicap, Z100/Scotchbond Multi-Purpose Plus, Vitremer, Photac-Fil Aplicap, or Dyract. The teeth were thermally stressed for 500 cycles and stained with methylene blue. The microleakage was quantified spectrophotometrically, and the data were statistically analyzed with Friedman's test. Results: There were no significant differences in microleakage among the five groups. Restorations of all tested materials showed some marginal leakage in Class V cavities. Conclusion: The microleakage performance of glass-ionomer-resin composite hybrid materials was similar to those of a conventional glass-ionomer and a bonded resin composite system.
Resumo:
Photodynamic therapy, term introduced by von Tapeiner in 1900, can be defined as the administration of a non toxic drug, i.e., a dye, known as photosensitizer (FS), which subsequently will be illuminated with light of specific wavelength. PDT is based on the interaction among FS, oxygen and light, which through photochemical reactions cause cell death. The FS molecules must have a high probability to form the singlet state after the excitation, which can induce chemical changes in the neighborhood in two ways, called reactions type I and type II. The type II reaction is based on the exchange of energy to molecular oxygen, exciting it to its state of higher energy (singlet), which is highly reactive. The proposed mechanisms for cell death are linked to damage to the DNA, mitochondria and to the cytoplasmic membrane. Several pre‐clinical and clinical trials have been carried out and the PDT is already used in many countries for treatment mainly against certain types of cancer. The therapy also has been gaining strength in antimicrobial control, since the microorganisms have appeared increasingly resistant to current antibiotics. Another attempt to use the PDT is for the inactivation of macro‐organisms, such as micro‐crustaceans and mosquitoes. To this end I tested whether the photosensitizers methylene blue, rose Bengal and the chlorophyll a has insecticidal activity against the yellow fever and dengue vector mosquito, Aedes aegypti. Since these diseases have no effective treatments, its control is linked to the vector control, which has shown resistance to chemical pesticides used. Based on this, this work shows its importance, because it is a new type of mosquito control since all the photosensitizers used are low cost, do not generate toxic products at the concentrations used and showed good results in mortality. The best photosensitizer was rose Bengal... (Complete abstract click electronic access below)
Resumo:
In this study, use was made of tucumã cake, in natura (TCN) and thermally treated (TCT), as potential alternative adsorbents for the adsorption of cationic and anionic dyes. The effects of the parameters: contact time, adsorbent: adsorbate mass ratio, and initial concentration of dye were analyzed. The adsorption isotherms were established from optimized adsorption parameters. The best conditions for adsorption were: equilibrium time of 7 h, concentration of 25 mg L 1 and ratio of 1:200 for the methylene blue dye; and pH 6.5, concentration of 25 mg L 1 and ratio of 1:200 for the congo red dye. The adsorption process was best represented by the Dubinin–Radushkevich and Sips isotherms. The kinetics of adsorption of the dyes were best described by the pseudo-second-order kinetic and Elovich models. TCT showed the best maximum adsorption capacity (Qm) for the methylene blue dye (63.92 mg g 1 ).
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To evaluate the ability of low time microwaveexposureto inactivate and damage cell membrane integrity of C. albicans. Materials and Methods: Two 200ml C. albicans suspensions were obtained. Sterile dentures were placed in a beaker containing Experimental (ES) or Control suspensions (CS). ES was microwaved at 650 W for 1, 2, 3, 4 or 5 min. Suspensions were optically counted using Methylene blue dye as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolphthalein Complexone method); DNA (spectrophotometer measurements at 260nm) and K+ (selective electrode technique). Data were analyzed by Student-t test and linear regression (α=0.05). In addition, flowcytometry analysis of Candida cells in suspensionwas performed using propidium iodide. Results: All ES cells demonstrated cell membrane damage at 3, 4 and 5 min,viable cells were nonexistent at 3, 4 and 5 min ES ASD plates and optical density of ES and CS was not significantly differentfor all exposition times. ES cells released highcontents of protein, K+ , Ca++ and DNA after 2 min exposition when compared to that of the CSs. Similar results were observed with flow cytometry analysiswith regard to the periodsof microwave exposure. Conclusions: Microwave irradiation inactivated C. albicansafter 3min and damaged cell membrane integrity after 2 min exposition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)