138 resultados para Plant indicator species
Resumo:
Bioassays were carried out to identify and characterize the allelopathic potential effects of forage legumes leucena (Leucaena leucocephala), mineirão (Stylosanthes guianensis cv. Mineirão) and calopogônio (Calopogonium mucunoides) on germination and radicle elongation of the pasture weeds desmódio (Desmodium adscendens), guanxuma (Sida rhombifolia) and assa-peixe (Vernonia polyanthes). Aqueous seeds and shoot extracts were prepared in a concentration of 10% (w/v). The pH and osmotic potential were measured in each extract. The effects of the osmotic potential on the results were calculated considering the regression equations adjusted to the variations of osmotic potential in each parameter and the osmotic potential of the extracts. The results showed that the pH did not constitute in a source of variation of the results. The donor species indicated allelopathic potential that varied in function of donor and receiver species and part of the donor plant. The aqueous shoot extract of mineirão and calopogônio showed inhibition potential higher than the extract from seeds, while for leucena the effects more evident were obtained with the extract from seeds. Comparatively, the radicle elongation was a more sensitive indicator than germination to the effects of the extracts.The receiver species assa-peixe was the less sensitive to the effects of the extract.
Resumo:
Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot.
Resumo:
Two populations of Chaetophora elegans (Roth) C. Agardh and two of Stigeoclonium helveticum Vischer were investigated for microhabitat characteristics and morphological variation in streams of Sao Paulo State, southeastern Brazil. Different patterns of microhabitat distribution were found between species investigated. Populations of C. elegans were distributed under relatively narrow microhabitat conditions (high irradiance, low depth, moderate to high current velocity, rocky substrata and lower values of niche width) and showing little morphometric variation (colony diameter, main axis cell size, and apical branch number). Stigeoclonium helveticum occurred under more diverse microhabitat conditions, revealed by lack of significant difference between sampling units with and without the alga and wider niche width, but also exhibited relatively narrow morphometric variation (plant length, main axis cell and lateral branch cell sizes). The narrow microhabitat conditions and smaller niche width of C. elegans can explain its low abundance (percentage cover) in streams from the area studied as well as in other regions of Sao Paulo State. In contrast, the wider variation of microhabitat conditions and the higher niche widths of S. helveticum suggest that this green alga is able to grow in a high number of stream ecosystems in the region investigated, ranging from undisturbed to highly disturbed habitats. Thus, the results suggest that S. helveticum is a generalist species.
Resumo:
The plant cell wall is composed mainly of polysaccharides some constituted of repeating units of a single sugar, as cellulose or by two or more sugars grouped in repeating oligosaccharide blocks as the galactomannans and xyloglucans. Variations in composition and fine structure of these cell wall polysaccharides have been used as taxonomic markers and in the comprehension of the evolutive process, particularly in the Leguminosae. Partial hydrolysis of these compounds give rise to oligomers, some of which are capable of eliciting the synthesis of defensive substances in plants named phytoalexins. Species which differ in respect to phytoalexin liberation also differ in cell wall composition, particularly in the pectic fraction of the wall. Pectinases (mainly endopolygalacturonases) present in fungi, have been shown to hydrolyze plant cell walls yielding phytoalexin-eliciting oligosaccharides which differ in composition and in eliciting capacity in different species. These differences can be associated with the capacity of a given species to produce phytoalexins. On the other hand, the phytoalexin induction in plants is being used as a method of producing novel bioactive secondary metabolites.
Resumo:
Propolis and plant secretions from three species, most frequently mentioned as botanical sources of the bee glue in Brazil (Baccharis dracunculifolia, Araucaria angustifolia and Eucalyptus citriodora) have been investigated using GC-MS. Based on chemical evidence, B. dracunculifolia was shown to be the main propolis source in Sao Paulo state. The antibacterial and antifungal activities of all four materials were also tested, the most active being propolis and Baccharis leaf exudate.
Resumo:
A general procedure was developed for the simultaneous separation of flavonoids and naphthopyrones from the polar extracts of the capitula from Brazilian everlasting plants is described. The ethanolic extracts of several species from the Paepalanthus genus (Eriocaulaceae) were fractionated by droplet countercurrent chromatography followed by column chromatography on pvp and sephadex LH-20. The isolated compounds were identified by spectrometric analysis and comparison with literature data. This approach led to the isolation of 9-O-β-D-glucopyranosylpaepalantine (1), 9-O-β-D-glucopyranosyl (1→6)allopyranosylpaepalantine (2), along with the flavonoids 6-methoxykaempferol (3), 3-O-β-D-glucopyranosyl-6-methoxykaempferol (4), patuletin (5), 3-Oβ-D-rutinosylpatuletin (6), 7-O-β-D-glucopyranosylquercetagetin (7), 5,7,4'-trihydroxy-6,3'-dimethoxyflavone (8) and 5,7,4'-trihydroxy-6,3'-dimethoxyflavonol (9).
Resumo:
We investigated if differences in morphological characters in two species of Metrodorea (Rutaceae) from Brazilian semideciduous forests correspond to some pollination divergence. M. nigra and M. stipularis are sympatric species, display a similar floral morphology, are protandrous, self-incompatible, their flower periods overlap, and both are pollinated by flies. M. nigra main pollinators are Pseudoptiloleps nigripoda (Muscidae) and Fannia sp. (Fanniidae); M. stipularis major pollinators are Phaenicia eximia (Calliphoridae), Palpada sp. and Ornidia obesa (Syrphidae). The distinct floral odor (disagreeable in M. nigra and sweet in M. stipularis) and color (brownish violet vs. pale yellow) determine the differences on type and number of floral visitors observed. Several species from semideciduous forests initially considered to be pollinated by diverse insects, present flies as main pollinators, stressing the importance of fly pollination in such habitats.
Resumo:
The hexane extract of the stems of Raulinoa echinata afforded the sesquiterpenes germacrene D (6), 1β,6α-dihydroxy-4-(15)-eudesmene (4) and oplopanone (5); the triterpenes squalene, isomultiflorenol (7), isobauerenol (8) and friedelin (9); the protolimonoids melianone (2) and melianodiol (3); and the pyranocoumarin 3-(1′-1′-dimethylallyl)-lomatin (1), which has not been reported previously as a natural product; together with β-sitosterol. The hexane extract and some of these compounds were assayed in vitro against trypomastigote forms of Trypanosoma cruzi. Brine shrimp lethality and antimicrobial activities of the crude extract and pure compounds were also evaluated.
Resumo:
Propolis is a resinous material collected by bees from the buds or other parts of plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The antifungal activity of propolis was studied in sensitivity tests on 80 strains of Candida yeasts: 20 strains of Candida albicans, 20 strains of Candida tropicalis, 20 strains of Candida krusei and 15 strains of Candida guilliermondii. The yeasts showed a clear antifungal activity with the following order of sensitivity: C. albicans > C. tropicalis > C. krusei > C. guilliermondii. Patients with full dentures who used a hydroalcoholic propolis extract showed a decrease in the number of Candida.
Resumo:
The leaf-cutting ants forage a wide variety of plant species, used for symbiotic fungus cultivation. To better understand this tripartite complex interaction, 24 colonies of Acromyrmex subterraneus brunneus were conditioned for 4 months to 6 different plants (Citrus spp., Ligustrum spp., Acalypha spp., Eucalyptus spp., Alchornea triplinervia, Melia spp.), to verify the influence of conditioning on foraging behavior of workers. The effect of plants on symbiotic fungus development was studied separately, through macerated plants in Agar and culture medium A as the control. During foraging, workers presented polyphagic foraging behavior, refusing the plants to which they were conditioned. The selection of plants is not correlated with the plant substrate that promotes good development of symbiotic fungus. Such results demonstrate the importance of plant diversity for fungus garden maintenance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The Arachis section is the most important of the nine sections of the genus Arachis because it includes the cultivated peanut, Arachis hypogaea. The genetic improvement of A. hypogaea using wild relatives is at an early stage of development in spite of their potential as sources of genes, including those for disease and pests resistance, that are not found in the A. hypogaea primary gene pool. Section Arachis species germplasm has been collected and maintained in gene banks and its use and effective conservation depends on our knowledge of the genetic variability contained in this material. Microsatellites are routinely used for the analysis of genetic variability because they are highly polymorphic and codominant. The objective of this study was to evaluate the transferability of microsatellite primers and the assay of genetic variability between and within the germplasm of some species of the Arachis section. Fourteen microsatellite loci developed for three different species of Arachis were analyzed and 11 (78%) were found to be polymorphic. All loci had transferability to all the species analyzed. The polymorphic loci were very informative, with expected heterozygosity per locus ranging from 0.70 to 0.94. In general, the germplasm analyzed showed wide genetic variation. © 2006 Sociedade Brasileira de Genética.
Resumo:
The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11. 1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
Three freshwater Rhodophyta species (Audouinella eugenea, A. hermannii and Compsopogon coeruleus) were tested as to their responses (photosynthesis, growth and pigment concentration) to two irradiances (low light, LL, 65 μmol m -2 s-1 and high light, HL, 300 μmol m-2 s-1) and two periods (short time, ST, 4 d, and long time, LT, 28 d). Higher growth rates were consistently observed at LL but significant differences were observed only for A. hermannii. Higher values of photoinhibition at LL were found for the three species, which is consistent with the dynamic photoinhibition as a reversible photoprotective mechanism against high irradiance. Light-induced decreases of effective quantum yield (EQY) were observed in the three species consisting of pronounced decreases from LL to HL. Rapid increases of non-photochemical quenching (NPQ) were observed mainly at LL, indicating energy dissipation by reaction centers. Results revealed distinct photoacclimation strategies to deal with high irradiances: the two Audouinella species had only characteristics of shade-adapted algae: acclimation by changes of size of photosy stem units (PSU) under LT and by PSU number under ST; higher values of the photoinhibition parameter (β) and NPQ, and lower values of EQY at LL; higher recovery capacity of potential quantum yield (PQY) at LL and under ST; highly significant positive correlation of electron transport rate (ETR) with NPQ. In addition, C. coeruleus mixed some characteristics of sun-adapted algae: acclimation by changes of PSU number under LT and by PSU size under ST; higher recovery capacity of EQY than the other two species; weak or no correlation of ETR with NPQ. Thus, these characteristics indicate that C. coeruleus cope with high irradiances more efficiently than the Audouinella species.