108 resultados para Optical Kerr effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550°C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are among the most important and frequently used class of biomaterials. In addition to biocompatibility, it is important that an implant material present satisfactory mechanical properties that allow long term use in the body. To improve such properties, different heat treatments are used, as well as doping with oxygen. The presence of interstitial oxygen in the crystal lattice causes deformation, increases the hardness, and causes modifications in anelasticity, thereby decreasing the elastic modulus. In this study, an alloy was prepared by arc melting precursor metals, heat and mechanically treated, and doped with oxygen, resulting in samples with different processing conditions. In each condition, the alloy was characterised in terms of amount of oxygen, X-ray diffraction, and optical microscopy. In addition, properties of the alloy, such as hardness and elastic modulus, were analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys have excellent biocompatibility, and combined with their low elastic modulus, become more efficient when applied in orthopedic prostheses. Samples of Ti-15Mo-Zr and Ti-15Zr-Mo system alloys were prepared using an arc-melting furnace with argon atmosphere. The chemical quantitative analysis was performed using an optical emission spectrometer with inductively coupled plasma and thermal conductivity difference. The X-ray diffractograms, allied with optical microscopy, revealed the structure and microstructure of the samples. The mechanical analysis was evaluated by Vickers microhardness measurements. The structure and microstructure of alloys were sensitive to molybdenum and zirconium concentration, presenting α′, α″ and β phases. Molybdenum proved to have greater β-stabilizer action than zirconium. Microhardness was changed with addition of molybdenum and zirconium, having Ti-15Zr-10Mo (436 ± 2 HV) and Ti-15Mo-10Zr (378 ± 4 HV) the highest values in each system.