120 resultados para One-meson-exchange model
Resumo:
Supersymmetry is already observed in (i) nuclear physics where the same empirical formula based on a graded Lie group described even-even and odd-even nuclear spectra and (ii) in Nambu-BCS theory where there is a simple relationship between the energy gap of the basic fermion and the bosonic collective modes. We now suggest similar relationships between the large number of mesonic and baryonic excitations based on the SU(3) substructure in the U(15/30) graded Lie group.
Resumo:
We discuss the consistency of the traditional vector meson dominance (VMD) model for photons coupling to matter, with the vanishing of vector meson-meson and meson-photon mixing self-energies at q2 = 0. This vanishing of vector mixing has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on such models, we here apply them to a study of photon-meson mixing and VMD. As an example we compare the predicted momentum dependence of one such model with a momentum-dependent version of VMD discussed by Sakurai in the 1960's. We find that it produces a result which is consistent with the traditional VMD phenomenology. We conclude that comparison with VMD phenomenology can provide a useful constraint on such models.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
Nonlocal interactions are an intrinsically quantum phenomenon. In this work we point out that, in the context of heavy ions, such interactions can be studied through the refractive elastic scattering of these systems at intermediate energies. We show that most of the observed energy dependence of the local equivalent bare potential arises from the exchange nonlocality. The nonlocality parameter extracted from the data was found to be very close to the one obtained from folding models. The effective mass of the colliding, heavy-ion, system was found to be close to the nucleon effective mass in nuclear matter.
Resumo:
A one parameter model of a confined-gluon propagator has been formulated by Frank and Roberts recently, which has a great success explaining π - and p - meson observables. We show, computing few chiral parameters, that a small variation of this model considering an infrared finite gluon propagator with a dynamically generated gluon mass, can also fit data related to the chiral symmetry breaking. This allows a direct interpretation for the unique parameter involved in the model as the gluon mass scale. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.
Resumo:
The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling constant gs allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson exchange. The effective interaction in ladder approximation up to order g4 s is discussed in detail. It is shown that the effective interaction naturally yields the box counterterm required to be introduced ad hoc previously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional quantities.
Resumo:
We consider the contributions to the neutrinoless double beta decays in a SU(3)L⊗U(1)N electroweak model. We show that for a range of parameters in the model there are diagrams involving vector-vector-scalar and trilinear scalar couplings which can be potentially as contributing as the light massive Majorana neutrino exchange one. We use these contributions to obtain constraints upon some mass scales of the model, such as the masses of the new charged vector and scalar bosons. We also consider briefly the decay in which, in addition to the two electrons, a Majoron-like boson is emitted. ©2001 The American Physical Society.
Resumo:
The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.
Resumo:
Some dynamical properties of the one dimensional Fermi accelerator model, under the presence of frictional force are studied. The frictional force is assumed as being proportional to the square particle's velocity. The problem is described by use of a two dimensional non linear mapping, therefore obtained via the solution of differential equations. We confirm that the model experiences contraction of the phase space area and in special, we characterized the behavior of the particle approaching an attracting fixed point. © 2007 American Institute of Physics.
Resumo:
The use of non-pressure compensating drip hose in horticultural and annual cycle fruits is growing in Brazil. In this case, the challenge for designers is getting longer lateral lines with high values of uniformity. The objective of this study was to develop a model to design longer lateral lines using non-pressure compensating drip hose. Using the developed model, the hypotheses to be evaluated were: a) the use of two different spacing between emitters in the same lateral line allows longer length; b) it is possible to get longer lateral lines using high values of pressure variation in the lateral lines since the distribution uniformity stays below allowable limits. A computer program was developed in Delphi based on the model developed and it is able to design lateral lines in level using non-pressure compensating drip hose. The input data are: desired distribution uniformity (DU); initial and final pressure in the lateral line; coefficients of relationship between emitter discharge and pressure head; hose internal diameter; pipe cross-sectional area with the dripper; and roughness coefficient for the Hazen-Williams equation. The program allows calculate the lateral line length with three possibilities: selecting two spacing between emitters and defining the exchange point; using two pre-established spacing between emitters and calculating the length of each section with different spacing; using one emitter spacing. Results showed that the use of two sections with different spacing between drippers in the lateral line didn't allow longer length but got better uniformity when compared with lateral line with one spacing between emitters. The adoption of two spacing increased the flow rate per meter in the final section which represented approximately 80% of the lateral line total length and this justifies their use. The software allowed DU above 90% with pressure head variation of 40% and the use of two spacing between emitters. The developed model/software showed to be accurate, easy to handle and useful for lateral line design using non-pressure compensating drip hose.
Resumo:
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we consider non-ideal excitation devices such as DC motors with restrictenergy output capacity. When such motors are attached to structures which needexcitation power levels similar to the source power capacity, jump phenomena and theincrease in power required near resonance characterize the Sommerfeld Effect, actingas a sort of an energy sink. One of the problems often faced by designers of suchstructures is how to drive the system through resonance and avoid this energy sink.Our basic structural model is a simple portal frame driven by a num-ideal powersource-(NIPF). We also investigate the absorption of resonant vibrations (nonlinearand chaotic) by means of a nonlinear sub-structure known as a Nonlinear Energy Sink(NES). An energy exchange process between the NIPF and NES in the passagethrough resonance is investigated, as well the suppression of chaos.