208 resultados para Nucleus Incertus
Resumo:
The cell bodies of 5-HT containing neurons that innervate the limbic forebrain are mainly found in the dorsal raphe nucleus and in the median raphe nucleus (MRN). To assess the role of the median raphe nucleus in anxiety, rats bearing either electrolytic or 5-HT-selective neurotoxic lesion of the MRN were tested in the elevated T-maze. This apparatus consists of two opposed open arms perpendicular to one enclosed arm. Two tasks are performed in succession by the same rat in one experimental session, namely inhibitory avoidance of the open arm, taken as a measure of conditioned anxiety and one-way escape from the open arm, considered as a measure of unconditioned fear. The test was performed 7 days after the electrolytic lesion (3 mA, 10 s) or 14 days after the neurotoxic lesion (5,7-DHT, 8 mug/1 mul). The results showed that while the electrolytic lesion impaired both inhibitory avoidance and one-way escape, the neurotoxic lesion impaired only inhibitory avoidance. Therefore, serotonergic pathways originating in the MRN seem to participate in the modulation of conditioned anxiety but not unconditioned fear. Other neurotransmitter systems that either originate in or pass through the MRN may regulate unconditioned fear. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We introduce a generalization of the relativistic eikonal amplitude originally developed to describe elastic scattering between structureless particles. The coherent and incoherent proton-nucleus scattering processes are analysed and closed-form expressions for elastic and inelastic amplitudes are derived. In particular, for the incoherent case, an energy-conserving version of Glauber's theory is obtained.
Resumo:
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 mu g/200 eta 1) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT2a/HT2c receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI;1 or 5 mu g/200 eta 1) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 mu g) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 mu g) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.
Resumo:
We determined the effects of two classical angiotensin II (ANG II) antagonists, [Sar(1), Ala(8)]-ANG II and [Sar(1), Thr(8)]-ANG II, and losartan (a nonpeptide and selective antagonist for the AT 1 angiotensin receptors) on diuresis, natriuresis, kaliuresis and arterial blood pressure induced by ANG II administration into the median preoptic nucleus (MnPO) of male Holtzman rats weighing 250-300 g. Urine was collected in rats submitted to a water load (5% body weight) by gastric gavage, followed by a second water load (5% body weight) 1 h later. The volume of the drug solutions injected was 0.5 mu l over 10-15 s. Pre-treatment with [Sar(1), Ala(8)]-ANG II (12 rats) and [Sar(1), Thr(8)]-ANG II (9 rats), at the dose of 60 ng reduced (13.7 +/- 1.0 vs 11.0 +/- 1.0 and 10.7 +/- 1.2, respectively), whereas losartan (14 rats) at the dose of 160 ng totally blocked (13.7 +/- 1.0 vs 7.6 +/- 1.5) the urine excretion induced by injection of 12 ng of ANG II (14 rats). [Sar(1), Ala(8)]-ANG II impaired Na+ excretion (193 +/- 16 vs 120 +/- 19): whereas [Sar(1), Thr(8)]-ANG II and losartan blocked Na+ excretion (193 +/- 16 vs 77 +/- 15 and 100 +/- 12, respectively) induced by ANG II. Similar effects induced by ANG II on K+ excretion were observed with [Sar(1), Ala(8)]-ANG II, [Sar(1), Thr(8)]-ANG II, and losartan pretreatment (133 +/- 18 vs 108 +/- 11, 80 +/- 12, and 82 +/- 15, respectively). The same doses as above of [Sar(1), Ala(8)]-ANG II (8 rats), [Sar(1), Thr(8)]-ANG II (8 rats). and losartan (9 rats) blocked the increase in the arterial blood pressure induced by 12 ng of ANG II (12 rats) (32 +/- 4 ru 4 +/- 2, 3.5 +/- 1, and 2 +/- 1: respectively. The results indicate that the AT1 receptor subtype participates in the increases of diuresis, natriuresis. kaliuresis and arterial blood pressure induced by the administration of ANG II into the MnPO.
Resumo:
The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.
Resumo:
This study investigated the effects of bilateral injections of serotonergic receptor agonist and antagonist into the lateral parabrachial nucleus (LPBN) on the ingestion of water and 0.3 M NaCl induced by intracerebroventricular angiotensin II (ANG II) or by combined subcutaneous injections of the diuretic furosemide (Furo) and the angiotensin-converting enzyme inhibitor captopril (Cap). Rats had stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle. Bilateral LPBN pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl each site) increased 0.3 M NaCl and water intakes induced by intracerebroventricular ANG II (50 ng/mu l) and 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with bilateral LPBN injections of a serotonergic 5-HT2A/2C receptor agonist DOI (5 mu g/200 nl) significantly reduced 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with methysergide or DOI into the LPBN produced no significant changes in the water intake induced by subcutaneous Furo + Cap. These results suggest that serotonergic mechanisms associated with the LPBN may have inhibitory roles in water and sodium ingestion in rats.
Resumo:
Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 mug), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.
Resumo:
We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors of the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive C-12(nu(mu),mu(-))X cross sections using a relativistic Fermi gas model with the calculated bound nucleon form factors. The effect of the bound nucleon form factors for this reaction is a reduction of similar to8% for the total cross section, relative to that calculated with the free nucleon form factors.
Resumo:
We determined the effects of DuP753 and PD123319 (both nonpeptides and selective antagonists of the AT(1) and AT(2) angiotensin receptors, respectively), and [Sar(1), Ala(8)]ANG II (a non-selective peptide antagonist of angiotensin receptors) on water and 3%NaCl intake induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of sodium-depleted Holtzman rats weighing 250-300 g. Twenty hours before the experiments, the rats were depleted of sodium using furosemide (10 ng/rat, sc). The volume of drug solution injected was 0.5 mu l over a period of 10-15 sec. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2.0 h. Pre-treatment with DuP753 (14 rats) at a dose of 60 ng completely abolished the water intake induced by injection of 12 ng of ANG II (15 rats) (6.4 +/- 0.6 vs 1.4 +/- 0.3 ml/2 h), where [Sar(1), Ala(8)]ANG II (12 rats) and PD123319 (10 rats) at the doses of 60 ng partially blocked water intake (6.4 +/- 0.6 vs 2.9 +/- 0.5 and 2.7 +/- 0.2 ml/2 h, respectively). In the same animals, [Sar(1), Ala(8)]ANG II, DuP753, and PD123319 blocked the sodium intake induced by ANG II (9.2 +/- 1.6 vs 3.3 +/- 0.6, 1.8 +/- 0.3, and 1.4 +/- 0.2 ml/2 h, respectively). These results indicate that both DuP753 and PD123319, administered into the PVN, blocked the water and sodium intake induced by administration of ANG II into the same site.
Resumo:
We investigated the influence of ibotenic acid lesions of the medial hypothalamus (MH) on salt appetite and arterial blood pressure responses induced by angiotensinergic and adrenergic stimulation of the median preoptic nucleus (MnPO) of rats. Previous injection of the adrenergic agonists norepinephrine, clonidine, phenylephrine, and isoproterenol into the MnPO of sham MH-lesioned rats caused no change in the sodium intake induced by ANG II. ANG II injected into the MnPO of MH-lesioned rats increased sodium intake compared with sham-lesioned rats. Previous injection of clonidine and isoproterenol increased, whereas phenylephrine abolished the salt intake induced by ANG II into the MnPO of MH-lesioned rats. Previous injection of norepinephrine and clonidine into the MnPO of sham MH-lesioned rats caused no change in the mean arterial pressure (MAP) induced by ANG II. Under the same conditions, previous injection of phenylephrine increased, whereas isoproterenol reversed the increase in MAP induced by angiotensin II (ANG II). ANG II injected into the MnPO of MH-lesioned rats induce a decrease in MAP compared with sham-lesioned rats. Previous injection of phenylephrine or norepinephrine into the MnPO of MH-lesioned rats induced a negative MAP, whereas pretreatment with clonidine or isoproterenol increased the MAP produced by ANG II injected into the MnPO of sham- or MH-lesioned rats. These data show that ibotenic acid lesion of the MH increases the sodium intake and presser responses induced by the concomitant angiotensinergic, alpha(2) and beta adrenergic activation of the MnPO, whereas alpha(1) activation may have opposite effects. MH involvement in excitatory and inhibitory mechanisms related to sodium intake and MAP control is suggested.
Resumo:
In this study we investigated the influence of a ventromedial hypothalamus (VMH) lesion with ibotenic acid on water and sodium intake and presser responses induced by combined treatment of the median preoptic nucleus (MnPO) with angiotensin Il (ANG II) and adrenergic agonists (phenylephrine, norepinephrine, isoproterenol and clonidine). Male Holtzman rats with a stainless steel cannula implanted into the MnPO and bilateral sham (vehicle) or VMH lesions with ibotenic acid were used. The ingestion of water and sodium and mean arterial pressure (MAP) were determined in separate groups submitted to sodium depletion with the diuretic furosemide (20 mg/rat). ANG II (10 pmol) injection into the MnPO of sham-lesioned rats induced water and sodium intake and presser responses. VMH-lesion reduced ANG II-induced water intake and increased saline intake, In sham rats phenylephrine (80 nmol) into MnPO increased, whereas norepinephrine (80 nmol) and clonidine (40 nmol) reduced ANG II-induced water intake while sodium intake was reduced only by clonidine into MnPO. In VMH-lesioned rats, phenylephrine reduced, noradrenaline increased and clonidine produced no effect on ANG II-induced water intake. In lesioned rats ANG II-induced sodium intake was reduced by phenylephrine and noradrenaline, whereas clonidine produced no change. ANG II-induced presser response was reduced in VMH-lesioned rats, but the presser response combining ANG II and phenylephrine or noradrenaline in VMH-lesioned rats was bigger than sham rats. These results show that the VMH is important for the changes in water and sodium intake and cardiovascular responses induced by angiotensinergic and adrenergic activation of the MnPO. (C) 1997 Elsevier B.V. B.V.