174 resultados para Nonplanar cationic porphyrins
Resumo:
This study was conducted at the Department of Plant Production, Sector Horticulture, UNESP - Botucatu, SP, Brazil, in order to assess the dynamics of cationic nutrients in roots and leaves and effects on dry matter production of roots and shoots in eggplant grown on conditions of increasing doses of potassium from two distinct sources (KCl and K 2SO 4). The experiment was arranged in randomized blocks in factorial 2 × 4 (two sources of potassium, KCl and K 2SO 4 and four doses of each source equivalent, 250, 500, 750 and 1000 kg ha -1 K 2O) comprising eight treatments with three replicates. For the experiment we used Oxisol medium texture (615 g of sand, silt 45 g and 340 g clay per kg soil). The characteristics evaluated were: soil electrical conductivity, mass of shoot and root material, content and ratio of K +, Ca 2+ and Mg 2+ in roots and leaves of eggplant. We conclude that excessive doses of sources of K 2O affected the production of dry matter of roots and shoots, as well as electrical conductivity. The accumulation and the relationship of Ca2+/K+, Mg 2+/K + were affected by increased K + concentration; K 2SO 4 was the fertilizer that was less damaging.
Resumo:
Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Fertilization of guava relies on soil and tissue testing. The interpretation of tissue test is currently conducted by comparing nutrient concentrations or dual ratios with critical values or ranges. The critical value approach is affected by nutrient interactions. Nutrient interactions can be described by dual ratios where two nutrients are compressed into a single expression or a ternary diagrams where one redundant proportion can be computed by difference between 100% and the sum of the other two. There are D(D-1) possible dual ratios in a D-parts composition and most of them are thus redundant. Nutrients are components of a mixture that convey relative, not absolute information on the composition. There are D-1 balances between components or ingredients in any mixture. Compositional data are intrinsically redundant, scale dependent and non-normally distributed. Based on the principles of equilibrium and orthogonality, the nutrient balance concept projects D-1 isometric log ratio (ilr) coordinates into the Euclidean space. The D-1 balances between groups of nutrients are ordered to reflect knowledge in plant physiology, soil fertility and crop management. Our objective was to evaluate the ilr approach using nutrient data from a guava orchard survey and fertilizer trials across the state of São Paulo, Brazil. Cationic balances varied widely between orchards. We found that the Redfield N/P ratio of 13 was critical for high guava yield. We present guava yield maps in ternary diagrams. Although the ratio between nutrients changing in the same direction with time is often assumed to be stationary, most guava nutrient balances and dual ratios were found to be non-stationary. The ilr model provided an unbiased nutrient diagnosis of guava. © ISHS.
Resumo:
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride- phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm-2. Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. Candida albicans biofilm overview after 30 min of contact with free ClAlPc. This study presents the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic nanoemulsions (NE) to inactivate C. albicans planktonic cultures and biofilm comparing with free ClAlPc. The photodynamic effect was dependent on the delivery system, superficial charge and light dose. Cationic NE-ClAlPc and free ClAlPc caused significant reduction in colony counts, cell metabolism and damage to the cell membrane (P < 0.05). However, only the free ClAlPc was able to cause photokilling of the yeast. The anionic NE-ClAlPc did not present antifungal activity. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Resumo:
Background - Pythiosis is a life-threatening disease caused by Pythium insidiosum. Photodynamic therapy (PDT) is an alternative treatment to surgery that uses the interaction of a photosensitizer, light and molecular oxygen to cause cell death. Objectives - To evaluate the effect of PDT on the in vitro growth of P. insidiosum and in an in vivo model of pythiosis. Methods - For in vitro studies, two photosensitizers were evaluated: a haematoporphyrin derivative (Photogem®) and a chlorine (Photodithazine®). AmphotericinB was also evaluated, and the control group was treated with sterile saline solution. All experiments (PDT, porphyrin, chlorine and light alone, amphotericinB and saline solution) were performed as five replicates. For in vivo studies, six rabbits were inoculated with 20,000 zoospores of P. insidiosum, and an area of 1cm3 was treated using the same sensitizers. The PDT irradiation was performed using a laser emitting at 660nm and a fluence of 200J/cm2. Rabbits were clinically evaluated daily and histopathological analysis was performed 72h after PDT. Results - For in vitro assays, inhibition rates for PDT ranged from 60 to 100% and showed better results in comparison to amphotericinB. For the in vivo assays, after PDT, histological analysis of lesions showed a lack of infection up to 1cm in depth. Conclusions and clinical importance - In vitro and in vivo studies showed that PDT was effective in the inactivation of P. insidiosum and may represent a new approach to treating pythiosis. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.
Resumo:
Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.
Resumo:
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile21)-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC13]Ctx(Ile21)-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile21)-Ha and [TOAC13]Ctx(Ile21)-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC0]Ctx(Ile21)-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC2 and TOAC13 derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane. © 2013 Vicente et al.
Resumo:
A method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) for determination of two important phosphodiesterase type-5 inhibitors (sildenafil and vardenafil) is introduced. The background electrolyte (BGE) consisted of an aqueous solution of 500 mmol L-1 acetic acid, and the capillary was previously treated with polybrene solution to prevent cationic analytes from adsorbing onto the inner surface. Although the analytes migrate in the counter flow, the total time is short. An instrument with two C4D detectors allowed a seamless transition from a fast method (less than one minute) but of low-efficiency using the first detector to a more efficient method using the second detector. The analysis of commercial tablets showed no significant difference between CE-C4D and HPLC methods. Conductivity detection is a well-known low selectivity detection scheme, which in conjunction with the high mobility of the co-ion in the BGE (hydroxonium) allows one to predict that other cationic analogues of sildenafil can also be detected. This is an interesting feature given the increasing number of compounds in this class. © 2013 The Royal Society of Chemistry.
Resumo:
Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecularfingerprint information at the single-molecule level. Spectra originating from single-molecule SERS experiments are rare events, which occur only if a single molecule is located in a hot-spot zone. In this spot, the molecule is selectively exposed to a significant enhancement associated with a high, local electromagnetic field in the plasmonic substrate. Here, we report an SMD study with an electrostatic approach in which a Langmuir film of a phospholipid with anionic polar head groups (PO 4 -) was doped with cationic methylene blue (MB), creating a homogeneous, two-dimensional distribution of dyes in the monolayer. The number of dyes in the probed area of the Langmuir-Blodgett (LB) film coating the Ag nanostructures established a regime in which single-molecule events were observed, with the identification based on direct matching of the observed spectrum at each point of the mapping with a reference spectrum for the MB molecule. In addition, advanced fitting techniques were tested with the data obtained from micro-Raman mapping, thus achieving real-time processing to extract the MB single-molecule spectra. © 2013 Society for Applied Spectroscopy.
Resumo:
Two different cationic polymers of the same chemical type and with very similar chemical structures were reacted with a natural bentonite over a wide range of polymer/clay ratios. This study involved the synthesis of cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene. Ionenes are ion-containing polymers that contain quaternary nitrogen atoms in the main macromolecular chain as opposed to a pendant chain. The CHN content, basal spacing, and elemental composition of each of the polymer-clay complexes were analyzed by X-ray diffraction, X-ray fluorescence, and thermogravimetry. All the polycations reacted to form interlayer complexes with clay, which displaced more Na+ and little Ca2+. Sodium and calcium were both present as interlayer cations in the clay and its complexes. The TG/DTG curves show that both polymers underwent thermal degradation in more than one stage. Specifically, 3,6-ionene was found to undergo two stages of decomposition and 3,6-dodecylionene undergo three stages. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174,85 kJ mol-1) complexes have greater thermal stability than 3,6-ionene (E = 115,52 kJ mol-1) complexes. The mechanism of degradation suggests a direct interaction with the dodecyl chain containing 12 carbons, which are present in 3,6-dodecylionene but not in 3,6-ionene. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)