157 resultados para Nonlinear System
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
In engineering practical systems the excitation source is generally dependent on the system dynamic structure. In this paper we analyze a self-excited oscillating system due to dry friction which interacts with an energy source of limited power supply (non ideal problem). The mechanical system consists of an oscillating system sliding on a moving belt driven by a limited power supply. In the oscillating system considered here, dry friction acts as an excitation mechanism for stick-slip oscillations. The stick-slip chaotic oscillations are investigated because the knowledge of their dynamic characteristics is an important step in system design and control. Many engineering systems present stick-slip chaotic oscillations such as machine tools, oil well drillstrings, car brakes and others.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.
Resumo:
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1 + 1) traveling-wave solutions for almost all the values of the Bond number θ (the special case θ=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. ©2005 The American Physical Society.
Resumo:
Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.
Resumo:
The present paper studies a system comprised of two blocks connected by springs and dampers, and a DC motor with limited power supply fixed on a block, characterizing a non-ideal problem. This DC motor exciting the system causes interactions between the motor and the structure supporting it. Because of that, the non-ideal mathematical formulation of the problem has one and a half extra degree of freedom than the ideal one. A suitable choice of physical parameters leads to internal resonance conditions, that is, its natural frequencies are multiple of each other, by a known integer quantity. The purpose here is to study the dynamic behavior of the system using an analytical method based on perturbation techniques. The literature shows that the averaging method is the more flexible method concerning non-ideal problems. Summarizing, an steady state solution in amplitude and phase coordinates was obtained with averaging method showing the dependence of the structure amplitudes with the rotation frequency of the motor. Moreover, this solution shows that on of the amplitude coordinates has influence in the determination of the stationary rotation frequency. The analytical solution obtained shows the presence of the rotation frequency in expressions representing the oscillations of the structure, and the presence of amplitude coordinates in expressions describing the dynamic motion of the DC motor. These characteristics show the influence not only of the motor on structure but also of the response of the structure on dynamical behavior of the motor. Copyright © 2005 by ASME.
Resumo:
In this paper, an expert and interactive system for developing protection system for overhead and radial distribution feeders is proposed. In this system the protective devices can be allocated through heuristic and an optimized way. In the latter one, the placement problem is modeled as a mixed integer non-linear programming, which is solved by genetic algorithm (GA). Using information stored in a database as well as a knowledge base, the computational system is able to obtain excellent conditions of selectivity and coordination for improving the feeder reliability indices. Tests for assessment of the algorithm efficiency were carried out using a real-life 660-nodes feeder. © 2006 IEEE.
Resumo:
The dynamical system investigated in this work is a nonlinear flexible beam-like structure in slewing motion. Non-dimensional and perturbed governing equations of motion are presented. The analytical solution for the linear part of these perturbed equations for ideal and for non-ideal cases are obtained. This solution is necessary for the investigation of the complete weak nonlinear problem where all nonlinearities are small perturbations around a linear known solution. This investigation shall help the analyst in the modelling of dynamical systems with structure- actuator interactions.
Resumo:
This paper presents a nonlinear model with individual representation of plants for the centralized long-term hydrothermal scheduling problem over multiple areas. In addition to common aspects of long-term scheduling, this model takes transmission constraints into account. The ability to optimize hydropower exchange among multiple areas is important because it enables further minimization of complementary thermal generation costs. Also, by considering transmission constraints for long-term scheduling, a more precise coupling with shorter horizon schedules can be expected. This is an important characteristic from both operational and economic viewpoints. The proposed model is solved by a sequential quadratic programming approach in the form of a prototype system for different case studies. An analysis of the benefits provided by the model is also presented. ©2009 IEEE.
Resumo:
This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.
Resumo:
This paper proposes a heuristic constructive multi-start algorithm (HCMA) to distribution system restoration in real time considering distributed generators installed in the system. The problem is modeled as nonlinear mixed integer and considers the two main goals of the restoration of distribution networks: minimizing the number of consumers without power and the number of switching. The proposed algorithm is implemented in C++ programming language and tested using a large real-life distribution system. The results show that the proposed algorithm is able to provide a set of feasible and good quality solutions in a suitable time for the problem. © 2011 IEEE.
Resumo:
Numerous researchers have studied about nonlinear dynamics in several areas of science and engineering. However, in most cases, these concepts have been explored mainly from the standpoint of analytical and computational methods involving integer order calculus (IOC). In this paper we have examined the dynamic behavior of an elastic wide plate induced by two electromagnets of a point of view of the fractional order calculus (FOC). The primary focus of this study is on to help gain a better understanding of nonlinear dynamic in fractional order systems. © 2011 American Institute of Physics.
Resumo:
We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.
Resumo:
Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.
Resumo:
This paper deals with a system involving a flexible rod subjected to magnetic forces that can bend it while simultaneously subjected to external excitations produces complex and nonlinear dynamic behavior, which may present different types of solutions for its different movement-related responses. This fact motivated us to analyze such a mechanical system based on modeling and numerical simulation involving both, integer order calculus (IOC) and fractional order calculus (FOC) approaches. The time responses, pseudo phase portraits and Fourier spectra have been presented. The results obtained can be used as a source for conduct experiments in order to obtain more realistic and more accurate results about fractional-order models when compared to the integer-order models. © Published under licence by IOP Publishing Ltd.