173 resultados para Nd : YAG ceramic laser


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Our goal in this study was to evaluate the antimicrobial effect of Er:YAG laser applied after biomechanical preparation of the root canals of dog's teeth with apical periodontitis. Background Data: Various in vitro studies have reported effective bacterial reduction in infected root canals using Er:YAG laser. However, there is no in vivo research to support these results. Methods: Forty root canals of dogs' premolar teeth with pulp necrosis and chronic periapical lesions were used. An initial microbiological sample was taken, and after biomechanical preparation was carried out, a second microbiological sample was taken. The teeth were divided into two groups: Group I-biomechanical preparation was taken of root canals without Er:YAG laser application; Group II-biomechanical preparation was taken of root canals with Er:YAG laser application using 140-mj input, 63-mJ output/15 Hz. After coronal sealing, the root canals were left empty for 7 days at which time a third microbiological sample was taken. The collected material was removed from the root canal with a #40 K file and placed in transport media. It was serially diluted and seeded on culture dishes selective for anaerobes, aerobes, and total streptococci. Colony-forming units per milliliter (CFU/mL) were counted. Results: Groups I and II showed an increase of CFU/mL for all microorganisms 7 days after treatment, being statistically significant for anaerobes in Group I and for anaerobes and total streptococci in Group II. When comparing CFU/mL of Groups I and II, there was a statistically significant increase after 7 d for total streptococci in Group II. Conclusion: Er:YAG laser applied after biomechanical preparation did not reduce microorganisms in the root canal system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective this study was to evaluate in vitro the bond strength of two etch-and-rise and one self-etching adhesive system after dentin irradiation with Er:YAG (erbium: yttrium aluminum garnet) laser using microtensile test. The results revealed that the groups treated with laser Er:YAG presented less tensile bond strength, independently to the adhesive system used. The prompt L-pop adhesive presented less microtensile bond strength compared to the other adhesives evaluated. There was no difference between single bond and excite groups. The adhesive failures were predominant in all the experimental groups. The Er:YAG laser influenced negatively bond strength values of adhesive systems tested in dental substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of Er:YAG laser on surface treatment to the bond strength of repaired composite resin after aged. Sixty specimens (n = 10) were made with composite resin (Z250, 3M) and thermocycled with 500 cycles, oscillating between 5 to 55A degrees C. The specimens were randomly separated in six groups which suffered the following superficial treatments: no treatment (GI, control), wearing with diamond bur (GII), sandblasted with aluminum oxide with 27.5 A mu m particles (GIII) for 10 s, 200 mJ Er:YAG laser (GIV), 300 mJ Er:YAG laser (GV), and 400 mJ Er:YAG laser (GVI), with the last 3 groups under a 10 Hz frequency for 10 s. Restoration repair was done using the same composite. The shear test was done into the Universal testing machine MTS-810. Analyzing the results through ANOVA and Tukey test, no significant differences were found (p-value is 0.5120). Average values analysis showed that superficial treatment with aluminum oxide presented the highest resistance to shear repair interface (8.91MPa) while 400 mJ Er:YAG laser presented the lowest (6.76 MPa). Fracture types analysis revealed that 90% suffered cohesive fractures to GIII. The Er:YAG laser used as superficial treatment of the aged composite resin before the repair showed similar results when used diamond bur and sandblasting with aluminum oxide particles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The success of endodontic treatment depends on the complete elimination of microorganisms from the root canal system, thus the search for new procedures to eliminate them is justified. The aim of this study was to assess bacterial reduction after intracanal irradiation with the Er:YAG laser. The canals of 70 extracted human maxillary canines were prepared up to file #40 using 1% NaOCl, irrigated with 17% EDTA, and then washed with physiological solution activated by ultrasound. The roots were sterilized by autoclaving, inoculated with 10 mu l of a suspension containing 1.5 x 10(8) CFU/ml of Enterococcus faecalis ATCC 29212 and incubated at 37A degrees C for 72 h. The canals were irradiated with the Er:YAG laser using two energy settings: 60 mJ and 15 Hz, and 100 mJ and 10 Hz. The remaining bacteria were counted immediately and 48 h after laser irradiation. The results showed a high bacterial reduction at both time points. With 60 mJ and 15 Hz there was an immediate reduction of 99.73% and the reduction was 77.02% after 48 h, and with 100 mJ and 10 Hz there was an immediate reduction of 99.95% and the reduction was 84.52% after 48 h. Although the best results were observed with 100 mJ of energy, the difference between the two settings was not statistically significant. The count performed 48 h after irradiation showed that E. faecalis were able to survive, and can grow even from small numbers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to compare intrapulpal temperature increase produced by high-speed handpiece, Er:YAG laser and CVDentus ultrasound tips during cavity preparation. Thirty bovine mandibular incisors with an enamel/dentin thickness of 4 mm at buccal surface had their roots amputated and were allocated to the following groups (n=10): Group I- high-speed handpiece; Group II- noncontact Er:YAG laser (250 mJ/4Hz); and Group III- CVDentus ultrasouns tips. All devices were used with water cooling. Class V cavities were prepared to a depth of 3.5 mm, measured with a periodontal probe. A type T thermocouple was placed inside the pulp chamber to determine the temperature increase (degrees C), which was recorded by a data acquisition system ADS 2000 IP (Lynx Technology) linked to a notebook computer. Data were analyzed statistically by oneway ANOVA and Tukey's test (p=0.05). The mean temperature rises were: 1.10 degrees C ( 0.56) for Group 1, 0.84 degrees C (0.55) for Group II, and 3.00 degrees C (1.34) for Group III. There were no statistically significant differences (p > 0.05) between Groups I and II, but both of them differed significantly from Group III (p < 0.05). In conclusion, the use of Er:YAG laser and high-speed handpiece for cavity preparation resulted in similar temperature increase. Although ultrasound tips generated significantly higher intrapulpal temperature increase, it remained below the critical value of 5.5 degrees C and may be considered safe for use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By means of IR spectroscopy, we determined the teeth ablation mechanism by an Er:YAG laser oscillating at 2.94 mum. Ejected dental material, ablated by the laser from human teeth, was deposited on an IR window and the absorption spectra were measured in the range 2500-20,000 nm. Sound teeth were used, and the corresponding film spectra were compared to spectra obtained by traditional methods. The films spectra obtained do not differ appreciably from those obtained by the traditional method for sound teeth, indicating that the material ejected by an Er:YAG represents the tooth condition.The obtained results confirm that a spectroscopic analysis of a tooth treated with an Er:YAG laser can be done measuring the absorbance of a film composed of ejected material without the need to slice it. In addition, we could determine that the laser absorption occurs mainly by the interstitial water, and the temperature elevation of the ejected material does not exceed 60degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. During tooth preparation, both high-speed handpieces and lasers generate heat, which, if not controlled, can cause pulpal necrosis.Purpose. The aim of this study was to compare temperature increases produced by a high-speed dental handpiece with those produced by a relatively new instrument, the Er:YAG (erbium: yttrium-aluminum-garnet) laser.Material and methods. Thirty bovine mandibular incisors were reduced to an enamel/dentin thickness of 2.5 mm. Class V preparations were completed to a depth of 2.0 mm, measured with a caliper or by a mark oil the burs. A thermocouple was placed inside the pulp chamber to determine temperature increases (degreesC). Analysis was performed on the following groups (n = 10): Group 1, high-speed handpiece without water cooling, Group 11, high-speed handpiece with water cooling (30 mL/min), and Group III, the noncontact Er:YAG laser (2.94 mum at 350 mJ/10 Hz) with water cooling (4.5 mL/min). The temperature increases were recorded by a computer linked to the thermocouples. The data were analyzed using the Kruskal-Wallis test. The Dunn multiple comparison test was used as post hoc test (alpha = .05).Results. The average temperature rises were: 11.64degreesC (+/-4.35) for Group 1, 0.96degreesC (+/-0.71) for Group 11, and 2.69degreesC (+/-1.12) for Group III. There were no statistical differences between Groups 11 and III, both 11 and III differed from Group I significantly (P = .000 and P = .002, respectively).Conclusion. The preparations made with the high-speed and the laser instrument generated similar heat increases under water cooling. Water cooling was essential to avoid destructive temperature increases when using both the high-speed handpiece and laser.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: This study was conducted to analyze microleakage in Class V cavity preparation, using rewetting (or not) just after burr or Er:YAG laser preparation of enamel and dentin walls in permanent teeth. Background Data: Several studies reported microleakage around composite restorations when cavity preparation was done or treated by Er:YAG laser. As the hybridized laser is removed when this laser is used to cut dental hard tissue, there is a need for new materials or techniques to minimize gaps and microleakage. Results: Primer solution showed significant effect in enamel and dentin, at the level of 5%, when Er:YAG laser was used as a cutting tool. Using primer solution after phosphoric acid in preparations with the laser, microleakage was similar in degree to when cavities were prepared with the burr. Conclusion: Re-wetting surface just after Er:YAG irradiation and chemical treatment with phosphoric acid using HEMA aqueous solution seems to improve the quality of bioattachment between the adhesive system and enamel/dentin, showing similarities between restoration behaviors independently of the cutting tool, whether burr or laser.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was conducted to analyze the ablation rate and micromorphological aspects of microcavities in enamel and dentin of primary and permanent teeth using a Er:YAG laser system. Micromorphological evaluation has been performed in terms of permanent teeth; however, little information about Er: YAG laser interaction with primary teeth can be found in the literature. Because children have been the most beneficiary patients with laser therapy in our offices, it is extremely necessary to compare the effects of this kind of laser system on the enamel and dentin of permanent and primary teeth. In this study, we used eleven intact primary anterior exfoliated teeth and six extracted permanent molar teeth. We used a commercial laser system: a Er: YAG Twin Light laser system (Fotona Medical Lasers, Slovenia) at 2940 nm, changing average energy levels per pulse ( 100, 200, 300, and 400 mJ) producing 48 microcavities in enamel and dentin of primary and permanent teeth. Primary teeth are more easily ablated than are permanent teeth, when related to enamel or dentin. However, while this laser system is capable of slowly revealing the enamel's microstructure, in dentin only the lowest laser energies permit this kind of observation, more easily decomposing the original tissue aspect, when related to primary or permanent teeth. Statistically, the only different factor at the 5% level was an energy per pulse of 400 mJ, confirming the results found in SEM. Our results showed that dentin in both primary and permanent teeth is less resistant to Er: YAG laser ablation; this fact is easily observed under SEM observation and through the ablation rate evaluation.