127 resultados para Microbial Activity
Resumo:
The aim of this study was to evaluate the antimicrobial activity of a new root canal sealer containing calcium hydroxide (Acroseal) and the root canal sealer based on MTA (Endo CPM Sealer), in comparison with traditional sealers (Sealapex, Sealer 26 and Intrafill) and white MTA-Angelus, against five different microorganism strains. The materials and their components were evaluated after manipulation, employing the agar diffusion method. A base layer was made using Müller-Hinton agar (MH) and wells were made by removing agar. The materials were placed into the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. The results showed that Sealapex and its base paste, Sealer 26 and its powder, Endo CPM Sealer and its powder, white MTA and its powder all presented antimicrobial activity against all strains. Intrafill and its liquid presented antimicrobial activity against all strains except P. aeruginosa and Acroseal was effective only against M. luteus and S. aureus.
Resumo:
Pectinases are a big group of enzymes that break down pectic polysaccharides of plant tissues into simpler molecules like galacturonic acids. It has long been used to increase yields and clarity of fruit juices. Since pectic substances are a very complex macromolecule group, various pectinolytic enzymes are required to degrade it completely. These enzymes present differences in their cleavage mode and specificity being basically classified into two main groups that act on pectin smooth regions or on pectin hairy regions. Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants. This review describes the pectinolytic enzymes and their substrates, the microbial pectinase production and characterization, and the industrial application of these enzymes. © Pedrolli et al.; Licensee Bentham Open.
Resumo:
Using the agar diffusion method, this study evaluated the in vitro antimicrobial activity of the commercial endodontic sealers Acroseal and Epiphany, a castor-oil based experimental sealer, Polifl, and a primer agent (Epiphany self-etching primer), against Enterococcus faecalis. Zinc oxide and eugenol cement (ZOE) served as control. Five wells per dish were made at equidistant points and immediately flled with the test and control materials. After incubation of the dishes at 37°C for 24 h and 48 h, the diameter of the zones of microbial growth inhibition produced around the wells was measured (in mm) with a millimeter rule. After 48 h, the diameters of the zones of microbial growth inhibition were the same as those observed at 24 h, only the substances continued to diffuse. Epiphany and Polifl did not show antibacterial activity (no formation of zones of microbial growth inhibition). The primer produced the largest zones of inhibition (17.62 mm) followed by Acroseal (7.25 mm) and ZOE (7.12 mm). E. faecalis was resistant to Epiphany and Polifl, while the primer and Acroseal sealer were effective against this microorganism under the tested conditions.
Resumo:
Purpose: The objective of this study was to evaluate the antimicrobial activity of six toothpastes for infants: 3 fluoride-free experimental toothpastes - cashew-based, mango-based and without plant extract and fluoride compared with 2 commercially fluoride-free toothpastes and 1 fluoridated toothpastes. Methods: Six toothpastes for infants were evaluated in this study: (1) experimental cashew-based toothpaste; (2) experimental mango-based toothpaste; (3) experimental toothpaste without plant extract and fluoride (negative control); (4) First Teeth brand toothpaste; (5) Weleda brand toothpaste; and (6) Tandy brand toothpaste (positive control). The antimicrobial activity was recorded against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, and Candida albicans using the agar plate diffusion test. Results: First Teeth, Weleda, mango-based toothpaste, and toothpaste without plant extract presented no antimicrobial effect against any of the tested micro-organisms. Cashew toothpaste had antimicrobial activity against S mutans, S sobrinus, and L acidophilus, but it showed no antimicrobial activity against C albicans. There was no statistical difference between the inhibition halo of cashew and Tandy toothpastes against S mutans and L acidophilus. Conclusions: Cashew fluoride-free toothpaste had inhibitory activity against Streptococcus mutans and Lactobacillus acidophilus, and these results were similar to those obtained for fluoridated toothpaste.
Resumo:
The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p<0.05). At 168 h, all materials showed similar pHs (p>0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.
Resumo:
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.
Resumo:
Objectives: To investigate if the participation of Atopobium vaginae, Megasphaera sp. and Leptotrichia sp. in the bacterial community of bacterial vaginosis (BV) is associated with distinct patterns of this condition. Methods: In this cross-sectional controlled study, 205 women with BV and 205 women with normal flora were included. Vaginal rinsing samples were obtained for measuring the levels of pro-inflammatory cytokines and bacterial sialidases. Real-time PCR was used to quantify the BV-associated bacteria and to estimate the total bacterial load using the 16S rRNA. Principal component analysis (PCA) using the measured parameters was performed to compare the BV samples with lower and higher loads of the species of interest. Results: Higher bacterial load (p<0.001), levels of interleukin 1-β (p<0.001) and sialidase activity (p<0.001) were associated with BV. Women with BV and higher relative loads of A vaginae, Megasphaera sp. and Leptotrichia sp. presented increased sialidase activity, but unchanged cytokine levels. PCA analysis did not indicate a different pattern of BV according to the loads of A vaginae, Megasphaera sp. and Leptotrichia sp. Conclusions: Greater participation of A vaginae, Megasphaera sp. and Leptotrichia sp. in vaginal bacterial community did not indicate a less severe form of BV; moreover, it was associated with increased sialidase activity.
Resumo:
Purpose: This paper aims to evaluate in vitro antibacterial activity of oregano essential oil against foodborne pathogens as a starting point for the use of spice as a natural preservative in food. Design/methodology/approach: Disc and well-diffusion assays were performed to investigate antibacterial activity of oregano essential oil against six bacteria strains: Bacillus cereus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella Typhimurium. Three concentrations of oregano essential oil were employed: 1.0 percent, 2.0 percent and 5.0 percent. Bacterial growth inhibition was determinate as the diameter of the inhibition zones. Findings: Oregano essential oil showed antibacterial activity against spoilage microorganisms, at different concentrations, except for P. aeruginosa. There was a significant difference between methodologies only for the microorganism S. aureus. The results provided evidence of the existence of significant differences among the concentrations of oregano essential oil for each microorganism evaluated. Research limitations/implications: Although the research for this paper involved only oregano essential oil, it provided a starting-point for further investigations concerning spices as natural preservatives for food systems. Practical implications: Disc and well-assays were found to be simple and reproducible practical methods. Other spices, their essential oil and extracts might be researched against other micro-organisms. Furthermore, in situ studies need to be performed to evaluate possible interactions between essential oils and compounds naturally present in food against microbial strains. Social implications: The imminent adoption of measures to reduce the use of additives in foods and the reduction on using such compounds. Originality/value: This study provides insights that suggest a promising exploratory development of food natural preservative against spoilage microorganisms in food systems by the use of oregano essential oil. © Emerald Group Publishing Limited.
Resumo:
The peptide LYS-[TRP6]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK- NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37 °C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL-1). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes. © 2012 Elsevier Inc.
Resumo:
Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a coiled coil structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus. © 2013 Springer-Verlag Wien.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Throughout the genetic and physiological evolution of microorganisms, the microbiological sciences have been expanding the introduction of new therapeutic trials against microbial diseases. Special attention has been paid to the bacterium Helicobacter pylori, which induces gastric infections capable of causing damage, ranging from acute and chronic gastritis to the development of gastric cancer and death. The use of compounds with natural origins has gained popularity in scientific research focused on drug innovation against H. pylori because of their broad flexibility and low toxicity. The aim of this study was to describe the use of natural products against H. pylori in order to clarify important parameters for related fields. The study demonstrated the vast therapeutic possibilities for compounds originating from natural sources and revealed the need for innovations from future investigations to expand the therapeutic arsenal in the fight against H. pylori infection.
Resumo:
Periodontal disease is an infectious disease characterized by the connective tissue destruction and consequent alveolar bone loss in response to plaque accumulation on the tooth surface. The clinical diagnosis of periodontal disease is based both on clinical examination involving the evaluation of probing depth and radiographic examination of alveolar bone loss but these examinations are not enough to determine the activity of the disease process. For that reason, it has been proposed to seek predictive disease markers in an attempt to assess the disease activity and so, evaluate the efficacy of the periodontal disease treatment. The aim of this review is to present recent advances in the development of proteomic, genomics and microbial biomarkers and potential clinical applications. It was concluded that periodontal treatment based on assessing the levels of salivary biomarkers emerges as a promising method in near future and will become an integral part of the evaluation of periodontal health.