172 resultados para Melting Enthalpy
Resumo:
Branched polyethylene/high-density polyethylene blends (BPE/HDPE) with a wide range of molecular weights, melt flow indexes (MFI), and intrinsic viscosity were prepared using the homogeneous binary catalyst system composed by Ni(alpha-diimine)Cl-2 (1) (alpha-diimine = 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine) and {Tp(Ms*)} TiCl3 (2) (Tp(Ms*)=hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) activated with MAO and/or TIBA in hexane at two different polymerization temperatures (30 and 55 degreesC) and by varying the nickel loading molar fraction (x(Ni)). At all Temperatures, a non-linear correlation between the x(Ni) and the productivity was observed, suggesting the occurrence of a synergistic effect between the nickel and the titanium catalyst precursors, which is more pronounced at 55 degreesC. The molecular weight of the BPE/HDPE blends considerably decreases with increasing Al/M molar ratio. The melt flow indexes (MFI) and intrinsic viscosities (eta) are strongly affected by x(Ni), but the melting temperatures are nearly constant, 132 +/- 3 degreesC. Dynamic mechanical thermal analysis (DMTA) shows the formation of different polymeric materials where the stiffness vanes according, to the x(Ni) and temperature used in the polymerization reaction. The surface morphology of the BPE/HDPE blends studied by scanning electron microscopy (SEM) revealed a low miscibility between the PE phases resulting in the formation of a sandwich structure after etching with o-xylene.
Resumo:
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Linear low density polyethylene (LLDPE) with different branching contents were prepared from ethylene, without the addition of alpha-olefin comonomer, using a combination of catalyst precursors {Tp(Ms)}NiCl (1) (Tp(Ms) = hydridotris(3-mesitylpyrazol-1-yl)) and Cp2ZrCl2 (2) activated with MAO/TMA (1:1) in toluene at 0degreesC and by varying the nickel loading mole fraction (x(Ni)). The polymerization results showed that the turnover frequencies are strongly dependent on the x(Ni) varying from 6.6 x 10(3) to 32.1 x 10(3) mol[C2H4]/mol[Zr] h. The C-13 NMR spectra of the copolymers showed that the branch contents of the polymers increase as the x(Ni) increase in the medium promoting the production of polymers with a wide range of melting point (T-m) (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A series of N-isopropylacrylamide (NIPAM)-acrylic acid-ethyl methacrylate terpolymers with varied monomer compositions was prepared by radical polymerization. The solution behavior of these polymers was studied in dilute aqueous solution using spectrophotometry, fluorescence spectroscopy and high-sensitivity differential scanning calorimetry. The results obtained revealed that the lower critical solution temperatures depend strongly on the copolymer composition, solution pH and ionic strength. At a high pH, the ionization of acrylic acid (AA) units leads to an increase in solution cloud points (T-c). Solutions of polymers containing 10% or less of AA display a constant T-c for pH above 5.5, with 15% there is a continuous increase in T-c with pH and, for higher AA contents, no clouding was observed within the studied temperature range. Fluorescence probe studies were conducted by following the I (1)/I (3) ratio of pyrene vibronic bands and the emission of anilinonaphtalene sulfonic acid, sodium salt (ANS), both approaches revealing the existence of hydrophobic domains for polymers with higher ethyl methacrylate content at temperatures lower than T-c, suggesting some extent of aggregation and/or a coil-to-globule transition. Scanning calorimetry measurements showed an endothermic transition at temperatures agreeing with the previously detected cloud points. Moreover, the transition curves became broader and with a smaller transition enthalpy, as both the AA content and the solution pH were increased. These broader transitions were interpreted to be the result of a wider molecular distribution upon polymer ionization, hence, displaying varied solution properties. The decrease in transition enthalpy was rationalized as a consequence of reminiscent hydration of NIPAM units, even after phase separation, owing to the presence of electric charges along the polymer chain.
Resumo:
The immobilization of soluble catalyst {Tp(Ms)}TiCl3 (Tp(Ms*)HB(3-mesityl-pyrazolyl)(2)(5-mesityl-pyrazolyl)(-)) on silica and MAO-modified silicas containing 4.0, 8.0 and 23.0 wt.% Al/SiO2 yields active supported catalysts for ethylene polymerization. Among the supported catalysts studied by XRF spectroscopy, higher titanium content was obtained using MAO-modified silica containing 8.0 wt.% Al/SiO2 as support. For the ethylene polymerization reactions carried out in hexane at 60degreesC using a combination of triisobutylaluminum (TiBA) and methylaluminoxane (MAO) (1:1), the activities varied between 24.4 and 113.5 kg of PE/mol [Ti] h. The highest activity is reached using MAO-modified silica containing 4.0 wt.% Al/SiO2 as support. The viscosity-average molecular weights ((M) over bar (v)) of the PE's produced with the supported catalysts varying from 1.44 to 9.94 x 10(5) g/mol with melting temperatures in the range of 125-140degreesC. The use of other Lewis acid cocatalysts, including TiBA, diethylaluminium chloride (DEAC), and trimethylaluminum (TMA) resulted also in the formation of active catalysts for ethylene polymerization. However, the activities are lower than that one using a combination of TiBA and MAO. The viscosity-average molecular weights (R,) of PE's are influenced by varying the cocatalysts as well as the Al/Ti molar ratio. The supported catalyst generated in situ under ethylene atmosphere is roughly four times more active than supported one containing 4.0 wt.% Al/SiO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The enthalpy-entropy compensation theory was applied to water sorption for grapes of Italy variety. The moisture sorption isotherms were analyzed using the static gravimetric method at 35, 40, 50, 60, 70 and 75 degrees C. For isotherms construction, the skin and pulp of the grape were used separately and it was possible to observe significant differences. The GAB equation was fitted to the experimental data, using direct nonlinear regression analysis; the agreement between experimental and calculated values was satisfactory. The net isosteric heat or enthalpy of water sorption, determined from the equilibrium sorption data, showed a different behavior when compared with other works, as it was obtained for skin and pulp separately. Plots of Delta h vs Delta S for skin and pulp provided the isokinetic temperatures T-Bs = 423.2 +/- 27.6 K and T-Bp = 424.5 +/- 25.3 K, respectively, indicating an enthalpy-controlled desorption process over the whole range of moisture content considered.
Resumo:
The partial oxalate method, with the columbite route, associated with the Pechini method, was used to obtain a very fine ceramic powder at low temperature. Using this route it was possible to obtain a very reactive powder and to synthesize a lead magnesium niobate (PMN) powder with up to 100% of perovskite phase at a lower temperatures than the PbO melting point. The influence of the BaTiO3 and PbTiO3 seeds in the phase formation, along with time and temperature during the PMN calcination, was also investigated. The amount of 2% of BaTiO3 seeds promoted PMN powder formation with 100% of perovskite phase and a very narrow particle size distribution. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Anisotropy of magnetic susceptibility (AMS) and isotopic (U-Pb, Sm-Nd) data were combined to study the emplacement setting of the granite sheets that constitute the Esperanca pluton in the Borborema Province (Northeastern Brazil). The sheets dip moderately to the SE along the contact zone between the Paleoproterozoic basement rocks and Early Neoproterozoic orthogneisses and metasediments. Granite fabrics were determined mainly using AMS in 136 sites distributed within the central and western part of the pluton. The sheets normally have susceptibility lower than 0.35 mSI but, locally, where a Ti-poor magnetite appears with titanite, the susceptibility increases up to 5 mSI. Comparison between the silicate fabric and AMS showed inconsistencies between the shape of mineral and magnetic ellipsoids despite of their orientations that fit fairly well to each other. AMS indicated the deformation was partitioned between the lower (tonalite, syenogranite) and upper (leucogranite and coarse porphyritic granite) sheets. In the lower sheets the curvilinear lineation trajectory is attributed to a dominant heterogeneous pure shear event that flattened laterally the still molten tonalite and syenogranite into the regional foliation. ne associated microstructures are typically magmatic. Zircon U/Pb data of the syenogranite yielded a crystallization age of 592 +/- 5 Ma. In the upper sheets the fabric recorded a component of simple shear deformation that displaced the coarse porphyritic granite and the top gneissic host rocks to the southwest. Microstructures are mostly of post-full crystallization type. T(DM) model ages and epsilon(Nd) (t = 0) values indicate that the magma contaminated by partial melting of the regional host rocks. Sheet propagation at the emplacement level would have exploited the contact zone between crustal blocks of different rheologies when the melt pressures would be able to tensionally fail the anisotropy of the host rocks. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Comm indica L. is an herbaceous species with ornamental and medicinal value, having seeds with a hard seed coat. This study aimed to test the influence of constant temperatures ranging from 5 to 45 C, at 5 C intervals, on the germination of scarified seeds. Data obtained were analyzed through the model of enthalpy of activation in order to obtain the optimum temperature range for germination. The species showed seed germinability in a wide temperature range (10-40 degrees C) being the optimal temperature range between 13.84 and 34.41 degrees C, determined by the enthalpy of activation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Moisture equilibrium data of persimmon pulp powders with 50% maltodextrin (dry basis) obtained with different drying methods were determined at 20, 30, 40 and 50 degrees C. The spray-dryer gave a dry product with a higher adsorption capacity than the other methods. The vacuum- and freeze-dried products had the same adsorption capacity. The highest isosteric heat of sorption was observed for powders produced by spray-drying. The isokinetic temperature (T(B)) calculated for persimmon pulp powder obtained by vacuum-, spray- and freeze-drying were 541.4 K, 616.3 K, 513.2 K, respectively. The sorption process was spontaneous and enthalpy controlled.
Resumo:
Polypropylene powder and sisal fibers were oxygen plasma treated, and the mechanical properties of their composites were tested. Two main effects were investigated: the incorporation of oxygen polar groups in the polypropylene surface and the surface degradation and chain scission of both polypropylene and sisal fibers. Prior to these treatments, three reactor configurations were tested to investigate the best condition for both effects to occur in PP film. Results showed that polypropylene-cellulose adhesion forces are about an order of magnitude higher for PP film treatments at 13.56 MHz than at 40 kHz owing to much higher chain scission at lower frequencies, although it probably also occurs at high frequency and high power. Polypropylene powder treated with oxygen plasma in optimum conditions for polar group incorporation did not result in improvement in any composite mechanical property, probably owing to the polymer melting. Sisal fibers and PP powder treated In conditions of surface degradation did not improve flexural or tensile properties but resulted in higher impact resistance, comparable to the improvement obtained with the addition of compatibilizer.
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.