127 resultados para MATURE OOCYTE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to evaluate the effects of season of the year (summer and winter) and parity (heifers and cows) on oocyte quality and number in buffaloes. For this purpose, 71 buffaloes had follicular wave emergence synchronized before OPU. OPU of all follicles >= 2mm was done 5 days after the beginning of the hormonal protocol, in 4 replicates (two for each season). Data were analyzed by ANOVA using PROC GLIMMIX, in a 2 x 2 factorial arrangement of treatments. No interactions were observed in following variables: number of follicles, number of total and viable oocytes, recovery rate, percentage of viable oocytes, grade I oocytes, grade II oocytes, grade III oocytes, denuded oocytes, expanded cumulus oocytes, and atretic/degenerated oocytes. Number of follicles visualized at OPU and recovery rate were not affected by parity or season. Relative to parity, number of total and viable oocytes were greater in heifers than in cows, respectively. Concerning season of the year, number of viable oocytes and viable oocyte rate were increased in winter. In conclusion, better oocyte quality can be obtained from heifers and during winter in buffaloes. However, the number of total oocytes seems to be more influenced by parity than by season of the year in this species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Effect of in vitro hormonal supplementation on the ultrastructure of oocyte from bitches at anestrus
Resumo:
Oocyte maturation is a complex process involving nuclear and cytoplasmic maturation. The nuclear maturation is a chromosomal segregation and the cytoplasmic maturation involves the reorganization of the cytoplasmic organelles, mRNA transcription and storage of proteins to be used during fertilization and early embryo development. The mechanism of oocyte maturation in vivo and in vitro still are not totally understood. However it is generally accepted that the second messenger cyclic adenosine monophosphate (cAMP) plays a critical role in the maintenance of meiotic blockage of mammalian oocytes. A relative increase in the level of cAMP within the oocyte is essential for maintaining meiosis block, while a decrease in cAMP oocyte concentration allows the resumption of meiosis. The oocyte cAMP concentration is regulated by a balance of two types of enzymes: adenylate cyclase (AC) and phosphodiesterases (PDEs), which are responsible for the synthesis and degradation of cAMP, respectively. After being synthesized by AC in cumulus cells, cAMP are transferred to the oocyte through gap junctions. Thus, specific subtypes PDEs are able to inhibit or attenuate the spontaneous meiotic maturation of oocytes with PDE4 primarily involved in the metabolism of cAMP in granulosa cells and PDE3 in the oocyte. Although the immature oocytes can resume meiosis in vitro, after being removed from antral follicles, cytoplasmic maturation seems to occur asynchronously with nuclear maturation. Therefore, knowledge of the oocyte maturation process is fundamental for the development of methodologies to increase the success of in vitro embryo production and to develop treatments for various forms of infertility. This review will present current knowledge about the maintenance of the oocyte in prophase arrest, and the resumption of meiosis during oocyte maturation, focusing mainly on the changes that take place in the oocyte.
Resumo:
The canine species has been used as an experimental model for preservation of endangered species. Biotechnologies of reproduction, such as in vitro maturation (IVM), have been used to meet this objective. Several protocols for in vitro embryo production (IVEP) in swine and bovine species have been adapted for canids. However, the highest rate reported for in vitro maturation in canids is only 39%, which is still lower than those in other species. Therefore, current research on assisted reproduction in canids have focused on several IVM protocols, including the addition of proteins, hormones, meiosis inhibitors, growth factors and antioxidants to the maturation media and the determination of suitable timing for culture, so that variables involved in the process can be fine-tuned. This review has the main objective of describing major developments and limitations in the process of oocyte maturation in bitches.
Resumo:
A better understanding of the paracrine and autocrine regulatory loops within the cumulus-oocyte complex (COC) is fundamental for the improvement of in vitro maturation (IVM) outcomes in humans and domestic species. This review presents the most important local regulators identified in the COC to date with special attention to those secreted by the oocyte and acting on cumulus cells, as well as their roles in different processes crucial for the successful maturation of the COC. An autocrine regulatory loop mediated by epidermal growth factor-like (EGF-like) peptides in cumulus cells triggers COC maturation. During COC differentiation, oocyte secreted factors (OSFs), particularly members of the transforming growth factor-beta (TGF beta) and fibroblast growth factor (FGF) families, regulate meiotic resumption, cumulus expansion, cumulus metabolism, apoptosis and steroidogenesis.
Resumo:
The acceptance of biotechnology for the most equine breeders association had a significant effect in the horse industry, gaining popularity around the world, because the increasing on the genetic gain, allowing the use of sub fertile mares and stallions with high genetics value on reproduction. The embryos in vitro production of human and cattle has been used with success, however in vitro embryo production is not efficient in the horse, as oocyte transfer (OT) and intracytoplasmatic sperm injection (ICSI). The oocyte transfer has been used especially in subfertile old mares presenting reproductive pathologies as: endometrite, cervical and uterine adhesions, blocked oviduct, perineal laceration and ovulation failures. During oocyte recovery process, the oocytes must be collected from immature follicles that need be matured in vitro or in vivo matured oocytes from pre-ovulatory follicles through the transvaginal aspiration guided by ultrasound. The recovered oocyte is transferred to a previously inseminated recipient mare, through the flank laparotomy. The intracytoplasmatic sperm injection (ICSI) is a procedure of in vitro fertilization that needs only one sperm that is aspirated and injected inside the oocyte. The oocytes used, can be from mature and immature follicles. Fresh, cooled and frozen semen can be used, because the procedure not requires a functional sperm. The use of Piezo drill resulted in a breakthrough the pellucid zone, allowing the vibration per minute provided in the sperm injection pipette, a major result of cleaved oocytes, due to a better sperm injection in the oocyte. The embryo transfer can be straight inside the oviduct, as also transcervical transferred after embryo culture produced in vitro. In conclusion both procedures (OT and ICSI) are effective to be used on equine assisted reproduction, getting results even lower than expected, but satisfactory from animal genetically superior
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)