113 resultados para MANGANESE(II) COMPLEXES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The [Mn4 IVO5(terpy)4(H 2O)2]6+ complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electronic transfer between dx2-y2 orbitals of the center metallic and pπ orbital of the ligand, which show great complexity of the system due to orbitals overlap present in octahedral complex of the metal-μ-oxo. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in ITO/glass electrode for better characterization of polymer was also performed. ©The Electrochemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic- sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H 2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated. © 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rifampicin, discovered more than 50 years ago, represents the last novel class of antibiotics introduced for the first-line treatment of tuberculosis. Drugs in this class form part of a 6-month regimen that is ineffective against MDR and XDR TB, and incompatible with many antiretroviral drugs. Investments in R&D strategies have increased substantially in the last decades. However, the number of new drugs approved by drug regulatory agencies worldwide does not increase correspondingly. Ruthenium complexes (SCAR) have been tested in our laboratory and showed promising activity against Mycobacterium tuberculosis. These complexes showed up to 150 times higher activity against MTB than its organic molecule without the metal (free ligand), with low cytotoxicity and high selectivity. In this study, promising results inspired us to seek a better understanding of the biological activity of these complexes. The in vitro biological results obtained with the SCAR compounds were extremely promising, comparable to or better than those for first-line drugs and drugs in development. Moreover, SCAR 1 and 4, which presented low acute toxicity, were assessed by Ames test, and results demonstrated absence of mutagenicity. © 2013 Pavan et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite the resistance developed by the Mycobacterium tuberculosis (MTb) strains, isoniazid (INK) has been recognized as one of the best drug for treatment of Tuberculosis (Tb). The coordination of INH to ruthenium metal centers was investigated as a strategy to enhance the activity of this drug against the sensitive and resistant strains of MTb. The complexes trans-[Ru(NH3)(4)(L)(INH)](2+) (L = SO2 or NH3) were isolated and their chemical and antituberculosis properties studied. The minimal inhibitory concentration (MIC) data show that [Ru(NH3)(5)(INH)](2+) was active in both resistant and sensitive strains, whereas free INK (non-coordinated) showed to be active only against the sensitive strain. The coordination of INH to the metal center in both [Ru(NH3)(5)(INH)](2+) and trans-[Ru(NH3)(4)(SO2)(INH)](2+) complexes led to a shift in the INH oxidation potential to less positive values compared to free INH. Despite, the ease of oxidation of INH did not lead to an increase in the in vitro INH activity against MTb, it might have provided sensitivity toward resistant strains. Furthermore, ruthenium complexes with chemical structures analogous to those described above were synthesized using the oxidation products of INK as ligands (namely, isonicotinic acid and isonicotinamide). These last compounds were not active against any strains of MTb. Moreover, according to DFT calculations the formation of the acyl radical, a proposed intermediate in the INH oxidation, is favored in the [Ru(NH3)(5)(INH)](2+) complex by 50.7 kcal mol(-1) with respect to the free INH. This result suggests that the stabilization of the acyl radical promoted by the metal center would be a more important feature than the oxidation potential of the INH for the antituberculosis activity against resistant strains. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compounds [NiX 2(PPh 3) 2] (where X is Cl -, Br -, I -, NO - 3, NCS -; and PPh 3 is triphenylphosphine) were prepared and characterized by infrared and atomic absorption spectroscopies and by carbon and hydrogen analyses. Simultaneous thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of these complexes were recorded in air. The decrease in mass observed indicates conversion of the complexes to oxides. The thermal decomposition of the halogen and nitrate complexes occurred in a number of steps; the thiocyanate complex decomposed in a single step. © 1994.