157 resultados para Local solutions of partial differential equations
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We determine the solutions of the Schrödinger equation for an asymptotically linear potential. Analytical solutions are obtained by superalgebra in quantum mechanics and we establish when these solutions are possible. Numerical solutions for the spectra are obtained by the shifted 1/N expansion method.
Resumo:
The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.
Resumo:
We study a field theory formulation of a fluid mechanical model. We implement the Hamiltonian formalism by using the BFFT conjecture in order to build a gauge invariant fluid field theory. We also generalize previous known classical dynamical field solutions for the fluid model. ©2000 The American Physical Society.
Resumo:
Exact solutions are found for the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions. The method works for the ground state or for the lowest orbital state with l = j - 1/2 , for any j.
Resumo:
The effects of veratrine have been investigated in mammalian, amphibian, and crustacean muscle, but not in fish. In this work, the action of veratrine was studied in the lateral muscle of the freshwater teleost Oreochromis niloticus after intramuscular injection. Histoenzymological typing and electron microscopy of muscle fibers before and 15, 30, and 60 min after veratrine injection (10 ng/kg fish) were used to indirectly assess the morphological changes and the oxidative and m-ATPase activities. In some cases, muscles were pretreated with tetrodotoxin to determine whether the ultrastructural changes were the result of Na+ channel activation by veratrine. Veratrine altered the metabolism of fibers mainly after 30 min. Oxidative fibers showed decreased NADH-TR activity, whereas that of glycolytic and oxidative-glycolytic type fibers increased. There was no change in the m-ATPase activity of the three fiber types, except at 60 min postveratrine, when a novel fiber type, which showed no reversal after acidic and alkaline preincubations, appeared. Ultrastructural damage involved sarcomeres, myofibrils, and mitochondria, but the T-tubules remained intact. Pretreatment with tetrodotoxin (1 ng/ml) prevented the ultrastructural changes caused by veratrine. These results show that in fish skeletal muscle veratrine produces some effects that are not seen in mammalian muscle.
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
We discuss phenomenological tests for the frozen infrared behavior of the running coupling constant and gluon propagators found in some solutions of Schwinger-Dyson equations of the gluonic sector of QCD. We verify that several observables can be used in order to select the different expressions of αs found in the literature. We test the effect of the nonperturbative coupling in the τ-lepton decay rate into nonstrange hadrons, in the ρ vector meson helicity density matrix that are produced in the χc2 → ρρ decay, in the photon to pion transition form factor, and compute the cross-sections for elastic proton-proton scattering and exclusive ρ production in deep inelastic scattering. These quantities depend on the infrared behavior of the coupling constant at different levels, we discuss the reasons for this dependence and argue that the existent and future data can be used to test the approximations performed to solve the Schwinger-Dyson equations and they already seem to select one specific infrared behavior of the coupling.
Resumo:
Objective. - To assess the prevalence of stings by small spiny driftwood catfish (carataí) of the genus Centromochlus (Auchenipteridae) accidentally caught in buckets during bucket bathing by riverside people along the Brazilian Amazon and to determine the probability of catching specimens of these fish during random throws of a bucket into the river. Methods. - We interviewed 27 adult residents living at the confluence of the Negro and Solimões rivers in Brazil regarding whether or not they had ever been stung by driftwood catfish while bucket bathing. To assess the likelihood of catching catfish in bathing buckets, we randomly threw a typical plastic bucket used for bathing in 4 series of 10 throws into the river at dusk or night around a floating house. Results. - Seventeen of the 27 subjects (63%) reported being injured by driftwood catfish during bucket bathing. Three individuals (17.6%) had been injured 2 to 3 times, totaling 23 puncture accidents. All stings occurred at dusk or early night. In the 4 series of 10 bucket throws, we caught 3 driftwood catfish (in 1 series we did not catch any fish). Thus, the chance of catching a driftwood catfish in a single bucket throw at dusk was slightly less than 10%. Conclusions. - The prevalence of stings by driftwood catfish to people bucket bathing in this section of the Brazilian Amazon is high, partly because of the relatively high chances of catching these small catfish during random throws of a bathing bucket into the river.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
The edges detection model by a non-linear anisotropic diffusion, consists in a mathematical model of smoothing based in Partial Differential Equation (PDE), alternative to the conventional low-pass filters. The smoothing model consists in a selective process, where homogeneous areas of the image are smoothed intensely in agreement with the temporal evolution applied to the model. The level of smoothing is related with the amount of undesired information contained in the image, i.e., the model is directly related with the optimal level of smoothing, eliminating the undesired information and keeping selectively the interest features for Cartography area. The model is primordial for cartographic applications, its function is to realize the image preprocessing without losing edges and other important details on the image, mainly airports tracks and paved roads. Experiments carried out with digital images showed that the methodology allows to obtain the features, e.g. airports tracks, with efficiency.
Resumo:
We present a nonperturbative quantization of the two-dimensional massless gauged Thirring model by using the path-integral approach. First, we will study the constraint structure of model via the Dirac's formalism and by using the Faddeev-Senjanovic method we calculate the vacuum-vacuum transition amplitude in a Rξ-gauge, then we compute the Green's functions in a nonperturbative framework. © 2010 American Institute of Physics.
Resumo:
In order for the projects of recovery of degraded areas to be successful, it is necessary to have a perfect recovery of the soil where the revegetation will be implanted as an initial action in the recovery of the whole process. The use of native forest species fully adapted to these types of terrain is another aspect of great importance, once the non-selection of these species, even if abundant in the surrounding areas, as it is in our case, implies great mortality of individuals during the planting and their low fixation during the process. The establishment of a monitoring program that contemplates the advancements obtained in the soil, the vegetation and the return of wild animals also collaborate in the evaluation of the success of the process. And, finally, the effective participation of the mining company, accepting and applying the techniques tested and indicated by research, even if, initially, the return time is longer than expected, also guarantees the success of the process. The mining company not only implemented a partnership with important universities in Brazil to obtain solutions for the environmental problems but also applied the developed techniques and the monitoring program. In the present work, we have attempted to summarize important aspects to evaluate the advancements in the rehabilitation plan for those areas, being here presented some results of the monitoring of areas under different levels of recovery, in accordance with the techniques adopted. Biological parameters of the soil were used to verify the efficiency of these different techniques in the recovery process. This work is part of the monitoring program of areas in rehabilitation by the mining company, implemented as of 1999 and in partnership with universities. The microbial activity was determined through the quantification of the carbon and nitrogen microbial biomass (BMC and BMN) and the activity of the dehydrogenase evaluated in the mining floor and tailing areas in different levels of soil preparation and planting of native species. The analysis of the parameters studied revealed that the preparation of the soil, following the three years proposed by the methodology, was important for the success in establishing the rehabilitation process. Some of the areas analyzed already show some parameters with values close or superior to those found in the capoeira (secondary forest), the latter being the non-treated area. © 2010 WIT Press.
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.