125 resultados para Linear programming.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.
Resumo:
Operational Research (OR) is an eminent science to business competitiveness and the capacity of algorithms and spreadsheets that exist today allows people to apply them for a lower cost and with less complexity. However, spreadsheets linked to OR techniques, when directed to real problems, are still little explored in their full potential. In order to use them better, this article utilizes the Microsoft Office Excel to solve an optimization practical problem and decision-making of machining subcontracting. In general, although considered a frequent problem, is not of easy solution, optimize the mix of production versus outsourcing, because of the restrictions and resources available, it requests investments in specific software. In this way, this research aims to develop software to be called SOSU (Optimization Software for Machining Subcontracting). SOSU should introduce the best mix of internal and subcontracted machining for n types of parts that, over a certain period of time t, maximize capacity and meet all the demand at the lowest cost possible. The methodology adopted follows the bibliographic reference and it is assumed that the necessary data to prove from mathematical modeling of production areas and from a system of costs already structured. The nature of the problem justifies the application of Linear Programming (LP), Visual Basic for Applications (VBA) is used for computational implementation and interface with the user and the supplement Solver to find the solution. The analysis of the experiments show that the SOSU optimizes resources and improves the decision-making process, besides an easy operation, it can be implemented or quickly adapted and without the need of large investments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sugarcane industry has been important in the Brazilian economy since the colonial period. The search for alternative energy sources has gained more prominence, by offering a product generating clean energy. With the opening of the Brazilian economy, the sector has undergone transformations operating in a free market environment requiring greater efficiency and competitiveness of those involved in order to stay in business. This scenario is producer/supplier independent, and social aspects related to their stay in the market. Although its share in sugarcane production is smaller than the plant itself, it is still considerable having reached around 20% to 25% in 2008 by employing labor, also production factors had an important economic impact in the regions where they operate. Therefore, this study aimed to estimate the economic efficiency and production of independent sugarcane producers in the state of Paraná through the DEA model. The Data envelopment analysis (DEA) is a nonparametric technique that, using linear programming constructs production borders from production units that employ similar technological processes to transform inputs into outputs.The results showed that of the total surveyed, 13.56% had maximum efficiency (an efficiency score equal to 1). The average efficiency under variable returns to scale (BCC-DEA) was 0.71024. One can thus conclude that for the majority of the samples collected, it might be better use of available resources to the in order to obtain the economic efficiency of the production process.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work deals with a problem of mixed integer optimization model applied to production planning of a real world factory that aims for hydraulic hose production. To optimize production planning, a mathematic model of MILP Mixed Integer Linear Programming, so that, along with the Analytic Hierarchy process method, would be possible to create a hierarchical structure of the most import criteria for production planning, thus finding through a solving software the optimum hose attribution to its respective machine. The hybrid modeling of Analytic Hierarchy Process along with Linear Programming is the focus of this work. The results show that using this method we could unite factory reality and quantitative analysis and had success on improving performance of production planning efficiency regarding product delivery and optimization of the production flow
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In some practical problems, for instance in the control systems for the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. New necessary and sufficient linear matrix inequalities (LMI) conditions for the design of state-derivative feedback for multi-input (MI) linear systems are proposed. For multi-input/multi-output (MIMO) linear time-invariant or time-varying plants, with or without uncertainties in their parameters, the proposed methods can include in the LMI-based control designs the specifications of the decay rate, bounds on the output peak, and bounds on the state-derivative feedback matrix K. These design procedures allow new specifications and also, they consider a broader class of plants than the related results available in the literature. The LMIs, when feasible, can be efficiently solved using convex programming techniques. Practical applications illustrate the efficiency of the proposed methods.
Resumo:
This paper presents a dynamic programming approach for semi-automated road extraction from medium-and high-resolution images. This method is a modified version of a pre-existing dynamic programming method for road extraction from low-resolution images. The basic assumption of this pre-existing method is that roads manifest as lines in low-resolution images (pixel footprint> 2 m) and as such can be modeled and extracted as linear features. On the other hand, roads manifest as ribbon features in medium- and high-resolution images (pixel footprint ≤ 2 m) and, as a result, the focus of road extraction becomes the road centerlines. The original method can not accurately extract road centerlines from medium- and high- resolution images. In view of this, we propose a modification of the merit function of the original approach, which is carried out by a constraint function embedding road edge properties. Experimental results demonstrated the modified algorithm's potential in extracting road centerlines from medium- and high-resolution images.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.