227 resultados para Lignin peroxidise
Resumo:
Considering that the root structure of the Brazilian genera belonging to the Catasetinae subtribe is poorly known, we describe the roots of twelve representatives from this subtribe. For anatomical analysis, the roots were fixed in FAA 50, preserved in ethanol 70% and sectioned at its medium region using razor blades. The sections were stained with 0.05% astra blue and safranin and mounted in glycerin. For the identification of starch we used Lugol ́s solution; for lignin, floroglucin chloridric; for lipids, Sudan III, and for flavanoids, potassium hydroxide. The relevant aspects were registered using a digital camera joined with an Olympus microspope (BX51 model). The structural similarities of all roots support the placement of the subtribe Catasetinae into the monophyletic tribe Cymbidieae. Some root features are restricted to one or two taxa and can be useful in the systematics of the subtribe. For example, the occurrence of flavonoidic crystals characterizes the genera Catasetum and Cychnodes, and the number of the velamen layers and the shape of the epivelamen cells are useful to confirm the taxonomic position of Clowesia amazonica. The presence of velamen and flavonoidic crystals was interpreted as an adaptation to the epiphytic habit.
Resumo:
The objective of this study was evaluate the effect of the log steaming on the chemical properties and decay resistance of Eucalyptus grandis wood. Logs with diameter between 20 and 22 cm were studied. Half of logs were kept in its on original condition, and the other half was steamed at 90°C for 13 hours. The holocellulosc, Klason lignin, total extractives content and the weight loss caused by the decay fungus Pycnoporus sanguineous were characterized. The results showed that the log steaming of E. grandis wood cause: (l)a significantly decreased in holocellulose content; (2) an increase of 4.8% and 4.4% in total extractives and lignin content, respectively; and (3) a decrease in its durability against the decay fungus P. sanguineus in order of 13.03%. Copyright © (2012) by WCTE 2012 Committee.
Resumo:
Sugarcane bagasse was pretreated with ozone to increase lignocellulosic material digestibility. Bagasse was ozonated in a fixed bed reactor at room temperature, and the effect of the two major parameters, ozone concentration and sample moisture, was studied. Acid insoluble and total lignin decreased whereas acid soluble lignin increased in all experiments. Pretreatment barely attacked carbohydrates, with cellulose and xylan recovery rates being >92%. Ozonolysis increased fermentable carbohydrate release considerably during enzymatic hydrolysis. Glucose and xylose yields increased from 6.64% and 2.05%, for raw bagasse, to 41.79% and 52.44% under the best experimental conditions. Only xylitol, lactic, formic and acetic acid degradation compounds were found, with neither furfural nor HMF (5-hydroxymethylfurfural) being detected. Washing detoxification provided inhibitor removal percentages above 85%, increasing glucose hydrolysis, but decreasing xylose yield by xylan solubilization. SEM analysis showed structural changes after ozonization and washing. © 2013 Elsevier Ltd.
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The purpose of this study was to evaluate the physical and mechanical properties of particleboard made with pruning wastes from Ipê (Tabebuia serratifolia) and Chapéu-de-Sol (Terminalia catappa) trees. Particleboards were prepared with both wood species, using all the material produced by grinding the pruning wastes. The particleboards had dimensions of 45×45 cm, a thickness of approximately 11.5 mm and an average density of 664 kg/m3. A urea-formaldehyde adhesive was used in the proportion of 12% of the dry particle mass. The particleboards were pressed at a temperature of 130 C for 10 mins. The physical and mechanical properties analyzed were density, moisture content, thickness swelling, percentage of lignin and cellulose, modulus of resilience, modulus of elasticity and tensile strength parallel to the grain, accordingly to the standards NBR 14810 and CS 236-66 (1968). The particleboards were considered to be of medium density. The particle size significantly affected the static bending strength and tensile strength parallel to the grain. Ipê presented better results, demonstrating a potential for the production and use of particleboard made from this species. © The Author(s) 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA