121 resultados para Infrared and Raman spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We studied the effect of silica surface on luminescence properties of terbium complex by spectroscopy characterization, where microparticles of mesoporous silica type MSU-X was prepared. We used silica with different surface: calcined, washed, functionalized with 3- aminopropyl-triethoxysilane (APTES), and 3-glycidoxypropyl-trimethoxysilane (GPTMS); impregnated with Tb3+-glutamic acid complex. The obtained materials were characterized by scanning electron microscopy, porosity measurements, small-angle X-ray scattering, as structural characterization; Fourier transform infrared and luminescence spectroscopy, as spectroscopy characterization. Finally, we observed that functional groups at the silica surface lead to changes on luminescent properties of the final materials. The observed shift of the absorption and emission bands can be assigned to the effect of the functional groups of mesoporous silica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The development of nanostructured materials have aroused great interest of the industries all over the country, since they enable the development of devices that can be used as gate insulators on silicon transistors, electrochromic devices, solid electrolyte oxygen sensors and as a photoluminescent materials . In this project, it is proposed to investigate the optical properties of CeO2 modified with rare earth Er processed in hydrothermal-microwave. The synthesis of one-dimensional nanostructures (1D) was measured from dilute aqueous solutions of acids and salts of starting reagents in the presence of chemical basis, after these aqueous solutions were processed on hydrothermal-microwave to particle growth. The particles obtained after processing were characterized by X-ray Diffraction, Rietveld Analysis and Raman Spectroscopy. The particle morphology was observed by scanning electron microscopy with field emission gun. The synthesis of 1D nanostructures are evaluated for different surfactants and starting precursors (ceria different salts), pH, temperature and pressure which can modify the morphology of the nanostructures. Combining laboratory experiments and theoretical calculations it was desired to understand the organization of the nanoparticles and their resulting structure. Strict control of chemical homogeneity, crystal structure, microstructure and interaction of the CeO2 cluster with different surfactants using the Hartree-Fock method, was intended to obtain properties compatible with their use in catalysts and optical devices. The use of mineralizer agent KOH and 8 minutes of processing time synthesis conditions were chosen to evaluate the effect of Er dopant. It has been proved that this doping with rare earth increases the photoluminescent properties of the compound obtained without change the structural and morphological propreties of ceria
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V(2)O(5)/TiO(2) catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm(-1) and polymeric vanadates by two broad bands in the region from 900 to 960 cm(-1) and 770 to 850 cm(-1). The Raman spectra do not exhibit characteristic peaks of crystalline V(2)O(5). These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V(4+) ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V(4+) ions are located in sites with octahedral symmetry substituting for Ti(4+) ions in the rutile structure. Magnetically interacting V(4+) ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V(2)O(5), a partial oxidation of V(4+) to V(5+) is apparent from the EPR results.
Resumo:
Thin films were prepared using glass precursors obtained in the ternary system NaPO(3)-BaF(2)-WO(3) and the binary system NaPO(3)-WO(3) with high concentrations of WO(3) (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L(I) and L(III) absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO(6)) and that these films are free of tungstate tetrahedral units (WO(4)). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO(3) increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO(6) octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO(3) concentrated samples (above 40% molar) attributed to the formation of WO(6) clusters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The vibrational spectra of palladium phthalocyanine (PdPc) evaporated thin solid films are reported, including the resonance Raman scattering, surface-enhanced resonance Raman scattering (SERRS) and SERRS mapping of the film surface using micro-Raman spectroscopy with 633 nm laser radiation. SERRS of PdPc was obtained by evaporating an overlayer of Ag nanoparticles on to the PdPc film on glass. The SERRS enhancement factor is estimated as similar to10(4) with reference to PdPc evaporated films on glass. The molecular organization of the PdPc evaporated films was probed using transmission and reflection-absorption infrared spectra. It was established that a random molecular distribution found in PdPc evaporated films is independent of temperature. No evidence of thermal degradation due to thermal annealing was found in the films. Electronic absorption and emission spectra are also discussed. Copyright (C) 2002 John Wiley Sons, Ltd.